Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Build Circle from 3 Points in 3D space implementation in C or C++

Tags:

c++

geometry

We have 3(three) xyz points that define a circle in 3D space, this circle needs to be converted into a polyline(for further rendering). I'm looking for a ready C or C++ function or free library that can do the job.

Don't understand why this was closed. And I can't even answer my own question there. Shame on you guys. But you will not stop the knowledge spreading!

like image 429
Dmitriy Avatar asked Dec 20 '12 17:12

Dmitriy


People also ask

How do you find the center of a circle with 3 points in 3D?

1) Find a plane from the 3 points and create a 2D coordinate system on that plane. 2) Convert all 3 points to that 2D coordinate system. 3) Find the circle center using the link above. 4) Convert the circle center (in 2D) back to 3D.

How do you find the center of a 3D circle?

The equation of a circle in R^2 reads: (x-x_0)^2 + (y - y_0)^2 = r^2 , where: M(x_0 ; y_0) is the centre of the circle and r is it's radius. Greek000 said: Well, you only need to find the distances between these three points in 3D space, which correspond to the lengths of the triangle sides.


3 Answers

There's a much simpler solution to find the circle parameters in real 3D, just take a look at the "barycentric coordinates" section in http://en.wikipedia.org/wiki/Circumscribed_circle . You can extract the following optimized code from that:

// triangle "edges"
const Vector3d t = p2-p1;
const Vector3d u = p3-p1;
const Vector3d v = p3-p2;

// triangle normal
const Vector3d w = t.crossProduct(u);
const double wsl = w.getSqrLength();
if (wsl<10e-14) return false; // area of the triangle is too small (you may additionally check the points for colinearity if you are paranoid)

// helpers
const double iwsl2 = 1.0 / (2.0*wsl);
const double tt = t*t;
const double uu = u*u;

// result circle
Vector3d circCenter = p1 + (u*tt*(u*v) - t*uu*(t*v)) * iwsl2;
double   circRadius = sqrt(tt * uu * (v*v) * iwsl2*0.5);
Vector3d circAxis   = w / sqrt(wsl);

You can then calculate the points on the circle in real 3D too and e.g. draw them using GL_LINE_STRIP in OpenGL. This should be much faster than using the 2D sin/cos approach.

// find orthogonal vector to the circle axis
const Vector3d an = circAxis.getNormalized();
const Vector3d ao = Vector3d(4.0+an[0], 4.0+an[0]+an[1], 4.0+an[0]+an[1]+an[2]).crossProduct(an).getNormalized();

// 4x4 rotation matrix around the circle axis
const int steps = 360; // maybe adjust according to circle size on screen
Matrix4d R = makeRotMatrix4d(circCenter, circAxis, 2.0*M_PI/double(steps));

// one point on the circle
Vector3d cp = circCenter + ao*circRadius;

// rotate point on the circle
for (int i=0; i<steps; ++i)
{
   circlePoints.push_back(cp);
   cp = transformPoint(cp, R); // apply the matrix
}

For the creation of the transformation matrix (i.e. makeRotMatrix4d()) see http://paulbourke.net/geometry/rotate/ for example.

Please note that I did not test if the above code really compiles, but it should give you enough hints.

like image 136
Mark Avatar answered Sep 20 '22 22:09

Mark


There is a nice article and a code sample on how to build a circle by 3 points in 2D, XY plane.

http://paulbourke.net/geometry/circlesphere/

http://paulbourke.net/geometry/circlesphere/Circle.cpp

To build a 3D circle we'll have to:

  • rotate our 3 points into XY plane
  • Calculate circle center
  • build a circle in XY plane using the code in the article
  • rotate it back into it's original plane

For rotations it is best to use quaternions.

To find a correct quaternion I looked at Ogre3d source code: void Quaternion::FromAngleAxis (const Radian& rfAngle, const Vector3& rkAxis)

There is one more useful function there: Quaternion getRotationTo(const Vector3& dest, const Vector3& fallbackAxis = Vector3::ZERO) const But I didn't use it.

For quaterions and vectors I used our own classes. Here is the full source code of the function that does the job:

bool IsPerpendicular(Point3d *pt1, Point3d *pt2, Point3d *pt3);
double CalcCircleCenter(Point3d *pt1, Point3d *pt2, Point3d *pt3, Point3d *center);

void FindCircleCenter(const Point3d *V1, const Point3d *V2, const Point3d *V3, Point3d *center)
{
    Point3d *pt1=new Point3d(*V1);
    Point3d *pt2=new Point3d(*V2);
    Point3d *pt3=new Point3d(*V3);


    if (!IsPerpendicular(pt1, pt2, pt3) )       CalcCircleCenter(pt1, pt2, pt3, center);
    else if (!IsPerpendicular(pt1, pt3, pt2) )  CalcCircleCenter(pt1, pt3, pt2, center);
    else if (!IsPerpendicular(pt2, pt1, pt3) )  CalcCircleCenter(pt2, pt1, pt3, center);
    else if (!IsPerpendicular(pt2, pt3, pt1) )  CalcCircleCenter(pt2, pt3, pt1, center);
    else if (!IsPerpendicular(pt3, pt2, pt1) )  CalcCircleCenter(pt3, pt2, pt1, center);
    else if (!IsPerpendicular(pt3, pt1, pt2) )  CalcCircleCenter(pt3, pt1, pt2, center);
    else {
        delete pt1;
        delete pt2;
        delete pt3;
        return;
    }
    delete pt1;
    delete pt2;
    delete pt3;

}

bool IsPerpendicular(Point3d *pt1, Point3d *pt2, Point3d *pt3)
// Check the given point are perpendicular to x or y axis
{
    double yDelta_a= pt2->y - pt1->y;
    double xDelta_a= pt2->x - pt1->x;
    double yDelta_b= pt3->y - pt2->y;
    double xDelta_b= pt3->x - pt2->x;

    // checking whether the line of the two pts are vertical
    if (fabs(xDelta_a) <= 0.000000001 && fabs(yDelta_b) <= 0.000000001){
        return false;
    }

    if (fabs(yDelta_a) <= 0.0000001){
        return true;
    }
    else if (fabs(yDelta_b) <= 0.0000001){
        return true;
    }
    else if (fabs(xDelta_a)<= 0.000000001){
        return true;
    }
    else if (fabs(xDelta_b)<= 0.000000001){
        return true;
    }
    else
        return false ;
}

double CalcCircleCenter(Point3d *pt1, Point3d *pt2, Point3d *pt3, Point3d *center)
{
    double yDelta_a = pt2->y - pt1->y;
    double xDelta_a = pt2->x - pt1->x;
    double yDelta_b = pt3->y - pt2->y;
    double xDelta_b = pt3->x - pt2->x;

    if (fabs(xDelta_a) <= 0.000000001 && fabs(yDelta_b) <= 0.000000001){
        center->x= 0.5*(pt2->x + pt3->x);
        center->y= 0.5*(pt1->y + pt2->y);
        center->z= pt1->z;

        return 1;
    }

    // IsPerpendicular() assure that xDelta(s) are not zero
    double aSlope=yDelta_a/xDelta_a; //
    double bSlope=yDelta_b/xDelta_b;
    if (fabs(aSlope-bSlope) <= 0.000000001){    // checking whether the given points are colinear.
        return -1;
    }

    // calc center
    center->x= (aSlope*bSlope*(pt1->y - pt3->y) + bSlope*(pt1->x + pt2 ->x)
                         - aSlope*(pt2->x+pt3->x) )/(2* (bSlope-aSlope) );
    center->y = -1*(center->x - (pt1->x+pt2->x)/2)/aSlope +  (pt1->y+pt2->y)/2;

    return 1;
}

//! Builds a circle in 3D space by 3 points on it and an optional center
void buildCircleBy3Pt(const float *pt1,
                      const float *pt2,
                      const float *pt3,
                      const float *c,       // center, can be NULL
                      std::vector<float> *circle)
{
    /*  Get the normal vector to the triangle formed by 3 points
        Calc a rotation quaternion from that normal to the 0,0,1 axis
        Rotate 3 points using quaternion. Points will be in XY plane 
        Build a circle by 3 points on XY plane 
        Rotate a circle back into original plane using quaternion
     */
    Point3d p1(pt1[0], pt1[1], pt1[2]);
    Point3d p2(pt2[0], pt2[1], pt2[2]);
    Point3d p3(pt3[0], pt3[1], pt3[2]);
    Point3d center;
    if (c)
    {
        center.set(c[0], c[1], c[2]);
    }

    const Vector3d p2top1 = p1 - p2;
    const Vector3d p2top3 = p3 - p2;

    const Vector3d circle_normal = p2top1.crossProduct(p2top3).normalize();
    const Vector3d xy_normal(0, 0, 1);


    Quaternion rot_quat;
    // building rotation quaternion
    {
        // Rotation axis around which we will rotate our circle into XY plane
        Vector3d rot_axis = xy_normal.crossProduct(circle_normal).normalize();
        const double rot_angle = xy_normal.angleTo(circle_normal); // radians

        const double w = cos(rot_angle * 0.5);
        rot_axis *= sin(rot_angle * 0.5);

        rot_quat.set(w, rot_axis.x, rot_axis.y, rot_axis.z);
    }

    Quaternion rot_back_quat;
    // building backward rotation quaternion, same as prev. but -angle
    {
        const double rot_angle = -(xy_normal.angleTo(circle_normal)); // radians
        const double w_back = cos(rot_angle * 0.5);
        Vector3d rot_back_axis = xy_normal.crossProduct(circle_normal).normalize();
        rot_back_axis *= sin(rot_angle * 0.5);
        rot_back_quat.set(w_back, rot_back_axis.x, rot_back_axis.y, rot_back_axis.z);
    }

    rot_quat.rotate(p1);
    rot_quat.rotate(p2);
    rot_quat.rotate(p3);
    rot_quat.rotate(center);

    if (!c)
    {
        // calculate 2D center
        FindCircleCenter(&p1, &p2, &p3, &center);
    }

    // calc radius
    const double radius = center.distanceTo(p1);

    const float DEG2RAD = 3.14159f / 180.0f;
    // build circle
    for (int i = 0; i < 360; ++i)
    {
        float degInRad = i * DEG2RAD;
        Point3d pt(cos(degInRad) * radius + center.x, sin(degInRad) * radius + center.y, 0);

        // rotate the point back into original plane 
        rot_back_quat.rotate(pt);

        circle->push_back(pt.x);
        circle->push_back(pt.y);
        circle->push_back(pt.z);
    }
}
like image 20
Dmitriy Avatar answered Sep 20 '22 22:09

Dmitriy


The following is the C#/Unity port of Mark's answer. It uses types and utility functions from Unity's scripting API.

// triangle "edges"
var t = p2 - p1;
var u = p3 - p1;
var v = p3 - p2;

// triangle normal
var w = Vector3.Cross(t, u);
var wsl = Vector3.Dot(w, w);
// TODO: if (wsl<10e-14) return false; // area of the triangle is too small (you may additionally check the points for colinearity if you are paranoid)

// helpers
var iwsl2 = 1f / (2f * wsl);
var tt = Vector3.Dot(t, t);
var uu = Vector3.Dot(u, u);

// result circle
Vector3 circCenter = p1 + (u * tt * (Vector3.Dot(u, v)) - t * uu * (Vector3.Dot(t, v))) * iwsl2;
var     circRadius = Mathf.Sqrt(tt * uu * (Vector3.Dot(v, v)) * iwsl2 * 0.5f);
Vector3 circAxis   = w / Mathf.Sqrt(wsl);

Using Unity's Gizmos, the circle can be drawn as follows (using 30 line segments to approximate it in this case):

// Draw the circle:
Gizmos.color = Color.white;
for (int i = 0; i < 30; ++i) 
{
    Gizmos.DrawLine(
        circCenter + Quaternion.AngleAxis(360f / 30f *  i     , circAxis) * (p1 - circCenter),
        circCenter + Quaternion.AngleAxis(360f / 30f * (i + 1), circAxis) * (p1 - circCenter)
    );
}

The result looks like follows for vertex positions var p1 = new Vector3(0f, 1.44f, 0f); var p2 = new Vector3(0f, 0.73f, 0.65f); var p3 = new Vector3(0f, -1.04f, 0f);:

Circle through three points

like image 22
j00hi Avatar answered Sep 19 '22 22:09

j00hi