Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Boxplots with Wilcoxon significance levels, and facets, show only significant comparisons with asterisks

Following up on this question and for the sake of completeness, I modified the accepted answer and customized the resulting plot, but I am still facing some important problems.

To sum up, I am doing boxplots reflecting significance of Kruskal-Wallis and pairwise Wilcoxon test comparisons.

I want to replace the p-value numbers with asterisks, and show only the significant comparisons, reducing vertical spacing to the max.

Basically I want to do this, but with the added problem of facets, that messes everything up.

So far I have worked on a very decent MWE, but it still shows problems...

library(reshape2)
library(ggplot2)
library(gridExtra)
library(tidyverse)
library(data.table)
library(ggsignif)
library(RColorBrewer)

data(iris)
iris$treatment <- rep(c("A","B"), length(iris$Species)/2)
mydf <- melt(iris, measure.vars=names(iris)[1:4])
mydf$treatment <- as.factor(mydf$treatment)
mydf$variable <- factor(mydf$variable, levels=sort(levels(mydf$variable)))
mydf$both <- factor(paste(mydf$treatment, mydf$variable), levels=(unique(paste(mydf$treatment, mydf$variable))))

# Change data to reduce number of statistically significant differences
set.seed(2)
mydf <- mydf %>% mutate(value=rnorm(nrow(mydf)))
##

##FIRST TEST BOTH

#Kruskal-Wallis
addkw <- as.data.frame(mydf %>% group_by(Species) %>%
                       summarize(p.value = kruskal.test(value ~ both)$p.value))
#addkw$p.adjust <- p.adjust(addkw$p.value, "BH")
a <- combn(levels(mydf$both), 2, simplify = FALSE)
#new p.values
pv.final <- data.frame()
for (gr in unique(mydf$Species)){
    for (i in 1:length(a)){
        tis <- a[[i]] #variable pair to test
        as <- subset(mydf, Species==gr & both %in% tis)
        pv <- wilcox.test(value ~ both, data=as)$p.value
        ddd <- data.table(as)
        asm <- as.data.frame(ddd[, list(value=mean(value)), by=list(both=both)])
        asm2 <- dcast(asm, .~both, value.var="value")[,-1]
        pf <- data.frame(group1=paste(tis[1], gr), group2=paste(tis[2], gr), mean.group1=asm2[,1], mean.group2=asm2[,2], FC.1over2=asm2[,1]/asm2[,2], p.value=pv)
        pv.final <- rbind(pv.final, pf)
    }
}
#pv.final$p.adjust <- p.adjust(pv.final$p.value, method="BH")
pv.final$map.signif <- ifelse(pv.final$p.value > 0.05, "", ifelse(pv.final$p.value > 0.01,"*", "**"))

cols <- colorRampPalette(brewer.pal(length(unique(mydf$Species)), "Set1"))
myPal <- cols(length(unique(mydf$Species)))

#Function to get a list of plots to use as "facets" with grid.arrange
plot.list=function(mydf, pv.final, addkw, a, myPal){
    mylist <- list()
    i <- 0
    for (sp in unique(mydf$Species)){
        i <- i+1
        mydf0 <- subset(mydf, Species==sp)
        addkw0 <- subset(addkw, Species==sp)
        pv.final0 <- pv.final[grep(sp, pv.final$group1), ]
        num.signif <- sum(pv.final0$p.value <= 0.05)
        P <- ggplot(mydf0,aes(x=both, y=value)) +
            geom_boxplot(aes(fill=Species)) +
            stat_summary(fun.y=mean, geom="point", shape=5, size=4) +
            facet_grid(~Species, scales="free", space="free_x") +
            scale_fill_manual(values=myPal[i]) + #WHY IS COLOR IGNORED?
            geom_text(data=addkw0, hjust=0, size=4.5, aes(x=0, y=round(max(mydf0$value, na.rm=TRUE)+0.5), label=paste0("KW p=",p.value))) +
            geom_signif(test="wilcox.test", comparisons = a[which(pv.final0$p.value<=0.05)],#I can use "a"here
              map_signif_level = F,            
              vjust=0,
              textsize=4,
              size=0.5,
              step_increase = 0.05)
        if (i==1){
            P <- P + theme(legend.position="none",
                  axis.text.x=element_text(size=20, angle=90, hjust=1),
                  axis.text.y=element_text(size=20),
                  axis.title=element_blank(),
                  strip.text.x=element_text(size=20,face="bold"),
                  strip.text.y=element_text(size=20,face="bold"))
        } else{
            P <- P + theme(legend.position="none",
                  axis.text.x=element_text(size=20, angle=90, hjust=1),
                  axis.text.y=element_blank(),
                  axis.ticks.y=element_blank(),
                  axis.title=element_blank(),
                  strip.text.x=element_text(size=20,face="bold"),
                  strip.text.y=element_text(size=20,face="bold"))
        }
        #WHY USING THE CODE BELOW TO CHANGE NUMBERS TO ASTERISKS I GET ERRORS?
        #P2 <- ggplot_build(P)
        #P2$data[[3]]$annotation <- rep(subset(pv.final0, p.value<=0.05)$map.signif, each=3)
        #P <- plot(ggplot_gtable(P2))
        mylist[[sp]] <- list(num.signif, P)
    }
    return(mylist)
}
p.list <- plot.list(mydf, pv.final, addkw, a, myPal)
y.rng <- range(mydf$value)
# Get the highest number of significant p-values across all three "facets"
height.factor <- 0.3
max.signif <- max(sapply(p.list, function(x) x[[1]]))
# Lay out the three plots as facets (one for each Species), but adjust so that y-range is same for each facet. Top of y-range is adjusted using max_signif.
png(filename="test.png", height=800, width=1200)
grid.arrange(grobs=lapply(p.list, function(x) x[[2]] +
             scale_y_continuous(limits=c(y.rng[1], y.rng[2] + height.factor*max.signif))), 
             ncol=length(unique(mydf$Species)), top="Random title", left="Value") #HOW TO CHANGE THE SIZE OF THE TITLE AND THE Y AXIS TEXT?
             #HOW TO ADD A COMMON LEGEND?
dev.off()

It produces the following plot:

test

As you can see there are some problems, most obviously:

1- Coloring does not work for some reason

2- I do not seem to be able to change the annotation with the asterisks

I want something more like this (mockup):

test1

So we need to:

1- Make coloring work

2- Show asterisks instead of numbers

...and for the win:

3- Make a common legend

4- Place Kruskal-Wallis line on top

5- Change the size (and alignment) of the title and y axis text

IMPORTANT NOTES

I would appreciate my code is left as intact as possible even if it isn't the prettiest, cause I still have to make use of intermediate objects like "CNb" or "pv.final".

The solution should be easily transferable to other cases; please consider testing "variable" alone, instead of "both"... In this case we have 6 "facets" (vertically and horizontally) and everything gets even more screwed up...

I made this other MWE:

##NOW TEST MEASURE, TO GET VERTICAL AND HORIZONTAL FACETS

addkw <- as.data.frame(mydf %>% group_by(treatment, Species) %>%
                       summarize(p.value = kruskal.test(value ~ variable)$p.value))
#addkw$p.adjust <- p.adjust(addkw$p.value, "BH")
a <- combn(levels(mydf$variable), 2, simplify = FALSE)
#new p.values
pv.final <- data.frame()
for (tr in levels(mydf$treatment)){
    for (gr in levels(mydf$Species)){
        for (i in 1:length(a)){
            tis <- a[[i]] #variable pair to test
            as <- subset(mydf, treatment==tr & Species==gr & variable %in% tis)
            pv <- wilcox.test(value ~ variable, data=as)$p.value
            ddd <- data.table(as)
            asm <- as.data.frame(ddd[, list(value=mean(value, na.rm=T)), by=list(variable=variable)])
            asm2 <- dcast(asm, .~variable, value.var="value")[,-1]
            pf <- data.frame(group1=paste(tis[1], gr, tr), group2=paste(tis[2], gr, tr), mean.group1=asm2[,1], mean.group2=asm2[,2], FC.1over2=asm2[,1]/asm2[,2], p.value=pv)
            pv.final <- rbind(pv.final, pf)
        }
    }
}
#pv.final$p.adjust <- p.adjust(pv.final$p.value, method="BH")
# set signif level
pv.final$map.signif <- ifelse(pv.final$p.value > 0.05, "", ifelse(pv.final$p.value > 0.01,"*", "**"))
plot.list2=function(mydf, pv.final, addkw, a, myPal){
    mylist <- list()
    i <- 0
    for (sp in unique(mydf$Species)){
    for (tr in unique(mydf$treatment)){
        i <- i+1
        mydf0 <- subset(mydf, Species==sp & treatment==tr)
        addkw0 <- subset(addkw, Species==sp & treatment==tr)
        pv.final0 <- pv.final[grep(paste(sp,tr), pv.final$group1), ]
        num.signif <- sum(pv.final0$p.value <= 0.05)
        P <- ggplot(mydf0,aes(x=variable, y=value)) +
            geom_boxplot(aes(fill=Species)) +
            stat_summary(fun.y=mean, geom="point", shape=5, size=4) +
            facet_grid(treatment~Species, scales="free", space="free_x") +
            scale_fill_manual(values=myPal[i]) + #WHY IS COLOR IGNORED?
            geom_text(data=addkw0, hjust=0, size=4.5, aes(x=0, y=round(max(mydf0$value, na.rm=TRUE)+0.5), label=paste0("KW p=",p.value))) +
            geom_signif(test="wilcox.test", comparisons = a[which(pv.final0$p.value<=0.05)],#I can use "a"here
              map_signif_level = F,            
              vjust=0,
              textsize=4,
              size=0.5,
              step_increase = 0.05)
        if (i==1){
            P <- P + theme(legend.position="none",
                  axis.text.x=element_blank(),
                  axis.text.y=element_text(size=20),
                  axis.title=element_blank(),
                  axis.ticks.x=element_blank(),
                  strip.text.x=element_text(size=20,face="bold"),
                  strip.text.y=element_text(size=20,face="bold"))
        }
        if (i==4){
            P <- P + theme(legend.position="none",
                  axis.text.x=element_text(size=20, angle=90, hjust=1),
                  axis.text.y=element_text(size=20),
                  axis.title=element_blank(),
                  strip.text.x=element_text(size=20,face="bold"),
                  strip.text.y=element_text(size=20,face="bold"))
        }
        if ((i==2)|(i==3)){
            P <- P + theme(legend.position="none",
                  axis.text.x=element_blank(),
                  axis.text.y=element_blank(),
                  axis.title=element_blank(),
                  axis.ticks.x=element_blank(),
                  axis.ticks.y=element_blank(),
                  strip.text.x=element_text(size=20,face="bold"),
                  strip.text.y=element_text(size=20,face="bold"))
        }
        if ((i==5)|(i==6)){
            P <- P + theme(legend.position="none",
                  axis.text.x=element_text(size=20, angle=90, hjust=1),
                  axis.text.y=element_blank(),
                  #axis.ticks.y=element_blank(), #WHY SPECIFYING THIS GIVES ERROR?
                  axis.title=element_blank(),
                  axis.ticks.y=element_blank(),
                  strip.text.x=element_text(size=20,face="bold"),
                  strip.text.y=element_text(size=20,face="bold"))
        }
        #WHY USING THE CODE BELOW TO CHANGE NUMBERS TO ASTERISKS I GET ERRORS?
        #P2 <- ggplot_build(P)
        #P2$data[[3]]$annotation <- rep(subset(pv.final0, p.value<=0.05)$map.signif, each=3)
        #P <- plot(ggplot_gtable(P2))
        sptr <- paste(sp,tr)
        mylist[[sptr]] <- list(num.signif, P)
    }
    }
    return(mylist)
}
p.list2 <- plot.list2(mydf, pv.final, addkw, a, myPal)
y.rng <- range(mydf$value)
# Get the highest number of significant p-values across all three "facets"
height.factor <- 0.5
max.signif <- max(sapply(p.list2, function(x) x[[1]]))
# Lay out the three plots as facets (one for each Species), but adjust so that y-range is same for each facet. Top of y-range is adjusted using max_signif.
png(filename="test2.png", height=800, width=1200)
grid.arrange(grobs=lapply(p.list2, function(x) x[[2]] +
             scale_y_continuous(limits=c(y.rng[1], y.rng[2] + height.factor*max.signif))), 
             ncol=length(unique(mydf$Species)), top="Random title", left="Value") #HOW TO CHANGE THE SIZE OF THE TITLE AND THE Y AXIS TEXT?
             #HOW TO ADD A COMMON LEGEND?
dev.off()

That produces the following plot:

test2

Now the color problem becomes more striking, the facet heights are uneven, and something should be done with the redundant facet strip texts too.

I am stuck at this point, so would appreciate any help. Sorry for the long question, but I think it is almost there! Thanks!!

like image 399
DaniCee Avatar asked Oct 17 '17 05:10

DaniCee


People also ask

What P-value is significant in Wilcoxon test?

First of all, p-values are nos strictly defined as a measure of the effect size. If the p-value is lower the significance level (usually 0.05) then we can say that we have statistically significant evidences to reject the null hypothesis, and thus to accept that the data are different in your case.

What does ties mean in Wilcoxon test?

If you have two identical values in your data, these are called > ties.


2 Answers

You can try following. As your code is really busy and for me too complicated to understand, I suggest a different approach. I tried to avoid loops and to use the tidyverse as much as possible. Thus, first I created your data. Then calculated kruskal wallis tests as this was not possible within ggsignif. Afterwards I will plot all p.values using geom_signif. Finally, insignificant ones will be removed and a step increase is added.

1- Make coloring work done

2- Show asterisks instead of numbers done

...and for the win:

3- Make a common legend done

4- Place Kruskal-Wallis line on top done, I placed the values at the bottom

5- Change the size (and alignment) of the title and y axis text done

library(tidyverse)
library(ggsignif)

# 1. your data
set.seed(2)
df <- as.tbl(iris) %>% 
  mutate(treatment=rep(c("A","B"), length(iris$Species)/2)) %>% 
  gather(key, value, -Species, -treatment) %>% 
  mutate(value=rnorm(n())) %>% 
  mutate(key=factor(key, levels=unique(key))) %>% 
  mutate(both=interaction(treatment, key, sep = " "))

# 2. Kruskal test
KW <- df %>% 
  group_by(Species) %>%
  summarise(p=round(kruskal.test(value ~ both)$p.value,2),
            y=min(value),
            x=1) %>% 
  mutate(y=min(y))

# 3. Plot  
P <- df %>% 
ggplot(aes(x=both, y=value)) + 
  geom_boxplot(aes(fill=Species)) + 
  facet_grid(~Species) +
  ylim(-3,7)+
  theme(axis.text.x = element_text(angle=45, hjust=1)) +
  geom_signif(comparisons = combn(levels(df$both),2,simplify = F),
              map_signif_level = T) +
  stat_summary(fun.y=mean, geom="point", shape=5, size=4) +
  xlab("") +
  geom_text(data=KW,aes(x, y=y, label=paste0("KW p=",p)),hjust=0) +
  ggtitle("Plot") + ylab("This is my own y-lab")

# 4. remove not significant values and add step increase
P_new <- ggplot_build(P)
P_new$data[[2]] <- P_new$data[[2]] %>% 
  filter(annotation != "NS.") %>% 
  group_by(PANEL) %>%
  mutate(index=(as.numeric(group[drop=T])-1)*0.5) %>% 
  mutate(y=y+index,
         yend=yend+index) %>% 
  select(-index) %>% 
  as.data.frame()
# the final plot  
plot(ggplot_gtable(P_new))

enter image description here

and similar approach using two facets

# --------------------
# 5. Kruskal
KW <- df %>% 
  group_by(Species, treatment) %>%
  summarise(p=round(kruskal.test(value ~ both)$p.value,2),
            y=min(value),
            x=1) %>% 
  ungroup() %>% 
  mutate(y=min(y))


# 6. Plot with two facets  
P <- df %>% 
  ggplot(aes(x=key, y=value)) + 
  geom_boxplot(aes(fill=Species)) + 
  facet_grid(treatment~Species) +
  ylim(-5,7)+
  theme(axis.text.x = element_text(angle=45, hjust=1)) +
  geom_signif(comparisons = combn(levels(df$key),2,simplify = F),
              map_signif_level = T) +
  stat_summary(fun.y=mean, geom="point", shape=5, size=4) +
  xlab("") +
  geom_text(data=KW,aes(x, y=y, label=paste0("KW p=",p)),hjust=0) +
  ggtitle("Plot") + ylab("This is my own y-lab")

# 7. remove not significant values and add step increase
P_new <- ggplot_build(P)
P_new$data[[2]] <- P_new$data[[2]] %>% 
  filter(annotation != "NS.") %>% 
  group_by(PANEL) %>%
  mutate(index=(as.numeric(group[drop=T])-1)*0.5) %>% 
  mutate(y=y+index,
         yend=yend+index) %>% 
  select(-index) %>% 
  as.data.frame()
# the final plot  
plot(ggplot_gtable(P_new))

enter image description here

Edit.

Regarding to your p.adjust needs, you can set up a function on your own and calling it directly within geom_signif().

wilcox.test.BH.adjusted <- function(x,y,n){
  tmp <- wilcox.test(x,y)
  tmp$p.value <- p.adjust(tmp$p.value, n = n,method = "BH")
  tmp
}  

geom_signif(comparisons = combn(levels(df$both),2,simplify = F),
          map_signif_level = T, test = "wilcox.test.BH.adjusted", 
          test.args = list(n=8))

The challenge is to know how many independet tests you will have in the end. Then you can set the n by your own. Here I used 8. But this is maybe wrong.

like image 132
Roman Avatar answered Nov 04 '22 20:11

Roman


Constructing ggplots in a loop has always been known to produce confusing results, and for the explanation of point 1 I'll refer to this question and many others. There's also a hint there about evaluating the ggplot object on the spot, e.g. via print. Re point 2, you were close, a bit of debugging with trial and error helped. Here's the complete code for plot.list:

plot.list=function(mydf, pv.final, addkw, a, myPal){
    mylist <- list()
    i <- 0
    for (sp in unique(mydf$Species)){
        i <- i+1
        mydf0 <- subset(mydf, Species==sp)
        addkw0 <- subset(addkw, Species==sp)
        pv.final0 <- pv.final[grep(sp, pv.final$group1), ]
        num.signif <- sum(pv.final0$p.value <= 0.05)
        P <- ggplot(mydf0,aes(x=both, y=value)) +
            geom_boxplot(aes(fill=Species)) +
            stat_summary(fun.y=mean, geom="point", shape=5, size=4) +
            facet_grid(~Species, scales="free", space="free_x") +
            scale_fill_manual(values=myPal[i]) +
            geom_text(data=addkw0, hjust=0, size=4.5, aes(x=0, y=round(max(mydf0$value, na.rm=TRUE)+0.5), label=paste0("KW p=",p.value))) +
            geom_signif(test="wilcox.test", comparisons = a[which(pv.final0$p.value<=0.05)],#I can use "a"here
                        map_signif_level = F,            
                        vjust=0,
                        textsize=4,
                        size=0.5,
                        step_increase = 0.05)
        if (i==1){
            P <- P + theme(legend.position="none",
                           axis.text.x=element_text(size=20, angle=90, hjust=1),
                           axis.text.y=element_text(size=20),
                           axis.title=element_blank(),
                           strip.text.x=element_text(size=20,face="bold"),
                           strip.text.y=element_text(size=20,face="bold"))
        } else{
            P <- P + theme(legend.position="none",
                           axis.text.x=element_text(size=20, angle=90, hjust=1),
                           axis.text.y=element_blank(),
                           axis.ticks.y=element_blank(),
                           axis.title=element_blank(),
                           strip.text.x=element_text(size=20,face="bold"),
                           strip.text.y=element_text(size=20,face="bold"))
        }
        P2 <- ggplot_build(P)
        P2$data[[4]]$annotation <- rep(subset(pv.final0, p.value<=0.05)$map.signif, each=3)
        P <- ggplot_gtable(P2)
        mylist[[sp]] <- list(num.signif, P)
    }
    return(mylist)
}

Note that we can no longer modify the plot via ggplot semantics, since we already applied ggplot_build/ggplot_gtable, so scale modification is no longer possible. If you want to preserve it, move it inside the plot.list function. So, changing to

grid.arrange(grobs=lapply(p.list, function(x) x[[2]]), 
             ncol=length(unique(mydf$Species)), top="Random title", left="Value")

yields

enter image description here

That's not a complete solution, of course, but I hope that helps.

like image 37
tonytonov Avatar answered Nov 04 '22 21:11

tonytonov