The following code doesn't compile:
#include <boost/variant.hpp>
class A {};
class B {};
class C {};
class D {};
using v1 = boost::variant<A, B>;
using v2 = boost::variant<C, D>;
int f(v1 const&) {
return 0;
}
int f(v2 const&) {
return 1;
}
int main() {
return f(A{});
}
both gcc and clang complains with:
test1.cpp: In function ‘int main()’:
test1.cpp:18:17: error: call of overloaded ‘f(A)’ is ambiguous
return f(A{});
^
test1.cpp:18:17: note: candidates are:
test1.cpp:11:5: note: int f(const v1&)
int f(v1 const&) {
^
test1.cpp:14:5: note: int f(const v2&)
int f(v2 const&) {
Given that is not possible to construct a v2
object from an A
instance why the compiler gives the same priority to both functions during the overload resolution?
The problem is the constructor
template<typename T>
variant(const T&)
of boost::variant
. The code below reproduces the problem without all the magic:
struct C {};
struct A {
A(const C&) {}
template<typename T>
A(const T&) {}
};
struct B {
template<typename T>
B(const T&) {}
};
int f(const A&) {
return 0;
}
int f(const B&) {
return 1;
}
int main() {
return f(C{});
}
I think the variant
constructor should only be enabled if the
argument is actually convertible to the arguments, you might want to
raise this as a bug.
A pragmatic approach, short of fixing the conversion with explicit conversion with proper SFINAE (I don't think it can be done elegantly outside the Boost Variant library), could be this:
See it Live On Coliru
#include <boost/variant.hpp>
class A {};
class B {};
class C {};
class D {};
using v1 = boost::variant<A, B>;
using v2 = boost::variant<C, D>;
namespace detail {
struct F : boost::static_visitor<int> {
template <typename... T>
int operator()(boost::variant<T...> const& v) const {
return boost::apply_visitor(*this, v);
}
int operator()(A) const { return 0; }
int operator()(B) const { return 0; }
int operator()(C) const { return 1; }
int operator()(D) const { return 1; }
} _f;
}
template <typename T>
int f(T const& t) {
return detail::F()(t);
}
int main() {
std::cout << f(A{}) << "\n";
std::cout << f(B{}) << "\n";
std::cout << f(C{}) << "\n";
std::cout << f(D{}) << "\n";
std::cout << f(v1{}) << "\n";
std::cout << f(v2{}) << "\n";
}
Prints
0
0
1
1
0
1
The assumption is that f(T)
always returns the same value for the same T
even if it is the member of more than one variant
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With