Here is a simple way to calculate an integer square root:
int isqrt(int num)
{
int root=0;
int b = 0x8000;
int a=0, c=0;
while (b) {
c = a|b;
if (c*c <= num)
a |= b;
b >>= 1;
}
}
Ingeniously (thanks Wikipedia), this can be optimised like this:
int sqrt(short num)
{
int op = num;
int res = 0;
int one = 1 << 30;
while (one > op)
one >>= 2;
while (one != 0) {
if (op >= res + one) {
op -= res + one;
res = (res >> 1) + one;
}
else
res >>= 1;
one >>= 2;
}
return res;
}
My question: Can a similarly optimised algorithm be written for an integer cube root? (This is to be run on a small microcontroller which prefers not to do multiplications)
According to this SO question and to the answer marked, from the Hacker's Delight book you can find this implementation:
int icbrt2(unsigned x) {
int s;
unsigned y, b, y2;
y2 = 0;
y = 0;
for (s = 30; s >= 0; s = s - 3) {
y2 = 4*y2;
y = 2*y;
b = (3*(y2 + y) + 1) << s;
if (x >= b) {
x = x - b;
y2 = y2 + 2*y + 1;
y = y + 1;
}
}
return y;
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With