Given an integer typedef:
typedef unsigned int TYPE;
or
typedef unsigned long TYPE;
I have the following code to reverse the bits of an integer:
TYPE max_bit= (TYPE)-1;
void reverse_int_setup()
{
TYPE bits= (TYPE)max_bit;
while (bits <<= 1)
max_bit= bits;
}
TYPE reverse_int(TYPE arg)
{
TYPE bit_setter= 1, bit_tester= max_bit, result= 0;
for (result= 0; bit_tester; bit_tester>>= 1, bit_setter<<= 1)
if (arg & bit_tester)
result|= bit_setter;
return result;
}
One just needs first to run reverse_int_setup(), which stores an integer with the highest bit turned on, then any call to reverse_int(arg) returns arg with its bits reversed (to be used as a key to a binary tree, taken from an increasing counter, but that's more or less irrelevant).
Is there a platform-agnostic way to have in compile-time the correct value for max_int after the call to reverse_int_setup(); Otherwise, is there an algorithm you consider better/leaner than the one I have for reverse_int()?
Thanks.
Input : 10 Output : 5 (10)10 = (1010)2. After reversing the bits we get: (0101)2 = (101)2 = (5)10. In this approach, one by one bit in the binary representation of n is being obtained with the help of bitwise right shift operation and they are being accumulated in rev with the help of bitwise left shift operation.
In applied mathematics, a bit-reversal permutation is a permutation of a sequence of items, where is a power of two. It is defined by indexing the elements of the sequence by the numbers from to , representing each of these numbers by its binary representation (padded to have length exactly.
Reverse Bits in C++ answer := answer OR (n AND i), and shift it to the left i times. n := n after right shifting 1 bit.
#include<stdio.h>
#include<limits.h>
#define TYPE_BITS sizeof(TYPE)*CHAR_BIT
typedef unsigned long TYPE;
TYPE reverser(TYPE n)
{
TYPE nrev = 0, i, bit1, bit2;
int count;
for(i = 0; i < TYPE_BITS; i += 2)
{
/*In each iteration, we swap one bit on the 'right half'
of the number with another on the left half*/
count = TYPE_BITS - i - 1; /*this is used to find how many positions
to the left (and right) we gotta move
the bits in this iteration*/
bit1 = n & (1<<(i/2)); /*Extract 'right half' bit*/
bit1 <<= count; /*Shift it to where it belongs*/
bit2 = n & 1<<((i/2) + count); /*Find the 'left half' bit*/
bit2 >>= count; /*Place that bit in bit1's original position*/
nrev |= bit1; /*Now add the bits to the reversal result*/
nrev |= bit2;
}
return nrev;
}
int main()
{
TYPE n = 6;
printf("%lu", reverser(n));
return 0;
}
This time I've used the 'number of bits' idea from TK, but made it somewhat more portable by not assuming a byte contains 8 bits and instead using the CHAR_BIT macro. The code is more efficient now (with the inner for loop removed). I hope the code is also slightly less cryptic this time. :)
The need for using count is that the number of positions by which we have to shift a bit varies in each iteration - we have to move the rightmost bit by 31 positions (assuming 32 bit number), the second rightmost bit by 29 positions and so on. Hence count must decrease with each iteration as i increases.
Hope that bit of info proves helpful in understanding the code...
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With