Hi I have a table that looks like this
Date Customer Pageviews
2014/03/01 abc 5
2014/03/02 xyz 8
2014/03/03 abc 6
I want to get page view aggregates grouped by week but showing aggregates for past 30 days - (sliding window aggregates with window-size of 30 days for every week)
I am using google bigquery
EDIT: Gordon - re your comment about "Customer", Actually what I need is slightly more complicated thats why I included customer in the table above. I am looking to get the number of customers who had >n pageviews in a 30day window every week. something like this
Date Customers>10 pageviews in 30day window
2014/02/01 10
2014/02/08 5
2014/02/15 6
2014/02/22 15
However to keep it simple, I will work my way if I could just get a sliding window aggregate of pageviews ignoring customers altogether. something like this
Date count of pageviews in 30day window
2014/02/01 50
2014/02/08 55
2014/02/15 65
2014/02/22 75
The BigQuery Window Functions allow you to query either a subset or a full set of rows from your dataset and return a value for every row of the results. They are normally used to calculate running totals, rolling averages, and removing duplicate rows from a dataset.
ARRAY_AGG. Returns an ARRAY of expression values. To learn more about the optional arguments in this function and how to use them, see Aggregate function calls. To learn more about the OVER clause and how to use it, see Window function calls.
BigQuery stores data using a columnar storage format that is optimized for analytical queries. BigQuery presents data in tables, rows, and columns and provides full support for database transaction semantics (ACID).
Better performance The main reason Google BigQuery is better than PostgreSQL is performance. Google BigQuery is 100% elastic, meaning that it allocates the necessary resources required on-demand to run your queries in seconds and is highly optimized for query performance.
How about this:
SELECT changes + changes1 + changes2 + changes3 changes28days, login, USEC_TO_TIMESTAMP(week)
FROM (
SELECT changes,
LAG(changes, 1) OVER (PARTITION BY login ORDER BY week) changes1,
LAG(changes, 2) OVER (PARTITION BY login ORDER BY week) changes2,
LAG(changes, 3) OVER (PARTITION BY login ORDER BY week) changes3,
login,
week
FROM (
SELECT SUM(payload_pull_request_changed_files) changes,
UTC_USEC_TO_WEEK(created_at, 1) week,
actor_attributes_login login,
FROM [publicdata:samples.github_timeline]
WHERE payload_pull_request_changed_files > 0
GROUP BY week, login
))
HAVING changes28days > 0
For each user it counts how many changes they have submitted per week. Then with LAG() we can peek into the next row, how many changes they submitted the -1, -2, and -3 week. Then we just add those 4 weeks to see how many changes were submitted on the last 28 days.
Now you can wrap everything in a new query to filter users with changes>X, and count them.
I have created the following "Times" table:
Table Details: Dim_Periods
Schema
Date TIMESTAMP
Year INTEGER
Month INTEGER
day INTEGER
QUARTER INTEGER
DAYOFWEEK INTEGER
MonthStart TIMESTAMP
MonthEnd TIMESTAMP
WeekStart TIMESTAMP
WeekEnd TIMESTAMP
Back30Days TIMESTAMP -- the date 30 days before "Date"
Back7Days TIMESTAMP -- the date 7 days before "Date"
and I use such query to handle "running sums"
SELECT Date,Count(*) as MovingCNT
FROM
(SELECT Date,
Back7Days
FROM DWH.Dim_Periods
where Date < timestamp(current_date()) AND
Date >= (DATE_ADD (CURRENT_TIMESTAMP(), -5, 'month'))
)P
CROSS JOIN EACH
(SELECT repository_url,repository_created_at
FROM publicdata:samples.github_timeline
) L
WHERE timestamp(repository_created_at)>= Back7Days
AND timestamp(repository_created_at)<= Date
GROUP EACH BY Date
Note that it can be used for "Month to date", Week to Date" "30 days back" etc. aggregations as well. However, performance is not the best and the query can take a while on larger data sets due to the Cartesian join. Hope this helps
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With