The objective is to display the person on a different background (aka background removal).
I'm using the Kinect with Microsoft's Beta Kinect SDK to do so. With help of the depth, the background is filtered and we get only the image of the person.
This is pretty simple to do, and we can find the code that does that everywhere on the Internet. However, the depth signal is noisy, and we get pixels which do not belong to the person that are displayed.
I applied an edge detector to see if it was useful, and I currently get this:
Here's another without edge detection:
My question is: Which way can I get rid of these noisy white pixels around the person?
I tried morphological operations, but some parts of the body are erased and still leave white pixels behind.
The algorithm doesn't need to be real-time, I can just apply it when I press a 'Save image' button.
I just tried to do background substraction with the closest frames on the shape border. The single pixels you see are flickering, which means it is noise and I can get easily get rid of them.
The project is now over, and here's what we did: manual calibration of the Kinect by using the OpenNI driver, which provides directly the infrared image. The result is really good, but each calibration is specific to each Kinect.
Then, we applied a little transparency on the borders, and the result looks really nice! I can't provide pictures, however.
Your problem isn't just the noisy white pixels. You're missing significant parts of the person as well, e.g. part of his right hand. I'd recommend being more conservative with your thresholding of the depth data (allow more false positives). This would give you more noisy pixels, but at least you'd have the person in their entirety.
To get rid of the noisy pixels, I can think of a couple of things:
The approaches aren't mutually exclusive so it may be worth trying to do them in combination. If I think of anything else, I'll post back here.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With