Say I have three database access functions foo
, bar
, and baz
that can each return Option[A]
where A
is some model class, and the calls depend on each other.
I would like to call the functions sequentially and in each case, return an appropriate error message if the value is not found (None
).
My current code looks like this:
Input is a URL: /x/:xID/y/:yID/z/:zID
foo(xID) match {
case None => Left(s"$xID is not a valid id")
case Some(x) =>
bar(yID) match {
case None => Left(s"$yID is not a valid id")
case Some(y) =>
baz(zID) match {
case None => Left(s"$zID is not a valid id")
case Some(z) => Right(process(x, y, z))
}
}
}
As can be seen, the code is badly nested.
If instead, I use a for
comprehension, I cannot give specific error messages, because I do not know which step failed:
(for {
x <- foo(xID)
y <- bar(yID)
z <- baz(zID)
} yield {
Right(process(x, y, z))
}).getOrElse(Left("One of the IDs was invalid, but we do not know which one"))
If I use map
and getOrElse
, I end up with code almost as nested as the first example.
Is these some better way to structure this to avoid the nesting while allowing specific error messages?
You can get your for
loop working by using right projections.
def ckErr[A](id: String, f: String => Option[A]) = (f(id) match {
case None => Left(s"$id is not a valid id")
case Some(a) => Right(a)
}).right
for {
x <- ckErr(xID, foo)
y <- ckErr(yID, bar)
z <- ckErr(zID, baz)
} yield process(x,y,z)
This is still a little clumsy, but it has the advantage of being part of the standard library.
Exceptions are another way to go, but they slow things down a lot if the failure cases are common. I'd only use that if failure was truly exceptional.
It's also possible to use non-local returns, but it's kind of awkward for this particular setup. I think right projections of Either
are the way to go. If you really like working this way but dislike putting .right
all over the place, there are various places you can find a "right-biased Either" which will act like the right projection by default (e.g. ScalaUtils, Scalaz, etc.).
Instead of using an Option
I would instead use a Try
. That way you have the Monadic composition that you'd like mixed with the ability to retain the error.
def myDBAccess(..args..) =
thingThatDoesStuff(args) match{
case Some(x) => Success(x)
case None => Failure(new IdError(args))
}
I'm assuming in the above that you don't actually control the functions and can't refactor them to give you a non-Option
. If you did, then simply substitute Try
.
I know this question was answered some time back, but I wanted to give an alternative to the accepted answer.
Given that, in your example, the three Option
s are independent, you can treat them as Applicative Functors and use ValidatedNel
from Cats to simplify and aggregate the handling of the unhappy path.
Given the code:
import cats.data.Validated.{invalidNel, valid}
def checkOption[B, T](t : Option[T])(ifNone : => B) : ValidatedNel[B, T] = t match {
case None => invalidNel(ifNone)
case Some(x) => valid(x)
def processUnwrappedData(a : Int, b : String, c : Boolean) : String = ???
val o1 : Option[Int] = ???
val o2 : Option[String] = ???
val o3 : Option[Boolean] = ???
You can then replicate obtain what you want with:
//import cats.syntax.cartesian._
(
checkOption(o1)(s"First option is not None") |@|
checkOption(o2)(s"Second option is not None") |@|
checkOption(o3)(s"Third option is not None")
) map (processUnwrappedData)
This approach will allow you to aggregate failures, which was not possible in your solution (as using for-comprehensions enforces sequential evaluation). More examples and documentation can be found here and here.
Finally this solution uses Cats Validated
but could easily be translated to Scalaz Validation
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With