Asynchronous programming is a type of programming in which we can execute more than one task without blocking the Main task (function). In Python, there are many ways to execute more than one function concurrently, one of the ways is by using asyncio.
We can write asynchronous code with Python by using a library called Asyncio, though. Python has another library called Aiohttp that is an HTTP client and server based on Asyncio. Thus, we can use Asyncio to create asynchronous API calls. This is useful for optimizing code.
The simplest way to execute a method asynchronously is to start executing the method by calling the delegate's BeginInvoke method, do some work on the main thread, and then call the delegate's EndInvoke method. EndInvoke might block the calling thread because it does not return until the asynchronous call completes.
Something like:
import threading
thr = threading.Thread(target=foo, args=(), kwargs={})
thr.start() # Will run "foo"
....
thr.is_alive() # Will return whether foo is running currently
....
thr.join() # Will wait till "foo" is done
See the documentation at https://docs.python.org/library/threading.html for more details.
You can use the multiprocessing module added in Python 2.6. You can use pools of processes and then get results asynchronously with:
apply_async(func[, args[, kwds[, callback]]])
E.g.:
from multiprocessing import Pool
def f(x):
return x*x
if __name__ == '__main__':
pool = Pool(processes=1) # Start a worker processes.
result = pool.apply_async(f, [10], callback) # Evaluate "f(10)" asynchronously calling callback when finished.
This is only one alternative. This module provides lots of facilities to achieve what you want. Also it will be really easy to make a decorator from this.
As of Python 3.5, you can use enhanced generators for async functions.
import asyncio
import datetime
Enhanced generator syntax:
@asyncio.coroutine
def display_date(loop):
end_time = loop.time() + 5.0
while True:
print(datetime.datetime.now())
if (loop.time() + 1.0) >= end_time:
break
yield from asyncio.sleep(1)
loop = asyncio.get_event_loop()
# Blocking call which returns when the display_date() coroutine is done
loop.run_until_complete(display_date(loop))
loop.close()
New async/await
syntax:
async def display_date(loop):
end_time = loop.time() + 5.0
while True:
print(datetime.datetime.now())
if (loop.time() + 1.0) >= end_time:
break
await asyncio.sleep(1)
loop = asyncio.get_event_loop()
# Blocking call which returns when the display_date() coroutine is done
loop.run_until_complete(display_date(loop))
loop.close()
It's not in the language core, but a very mature library that does what you want is Twisted. It introduces the Deferred object, which you can attach callbacks or error handlers ("errbacks") to. A Deferred is basically a "promise" that a function will have a result eventually.
You can implement a decorator to make your functions asynchronous, though that's a bit tricky. The multiprocessing
module is full of little quirks and seemingly arbitrary restrictions – all the more reason to encapsulate it behind a friendly interface, though.
from inspect import getmodule
from multiprocessing import Pool
def async(decorated):
r'''Wraps a top-level function around an asynchronous dispatcher.
when the decorated function is called, a task is submitted to a
process pool, and a future object is returned, providing access to an
eventual return value.
The future object has a blocking get() method to access the task
result: it will return immediately if the job is already done, or block
until it completes.
This decorator won't work on methods, due to limitations in Python's
pickling machinery (in principle methods could be made pickleable, but
good luck on that).
'''
# Keeps the original function visible from the module global namespace,
# under a name consistent to its __name__ attribute. This is necessary for
# the multiprocessing pickling machinery to work properly.
module = getmodule(decorated)
decorated.__name__ += '_original'
setattr(module, decorated.__name__, decorated)
def send(*args, **opts):
return async.pool.apply_async(decorated, args, opts)
return send
The code below illustrates usage of the decorator:
@async
def printsum(uid, values):
summed = 0
for value in values:
summed += value
print("Worker %i: sum value is %i" % (uid, summed))
return (uid, summed)
if __name__ == '__main__':
from random import sample
# The process pool must be created inside __main__.
async.pool = Pool(4)
p = range(0, 1000)
results = []
for i in range(4):
result = printsum(i, sample(p, 100))
results.append(result)
for result in results:
print("Worker %i: sum value is %i" % result.get())
In a real-world case I would ellaborate a bit more on the decorator, providing some way to turn it off for debugging (while keeping the future interface in place), or maybe a facility for dealing with exceptions; but I think this demonstrates the principle well enough.
Just
import threading, time
def f():
print "f started"
time.sleep(3)
print "f finished"
threading.Thread(target=f).start()
My solution is:
import threading
class TimeoutError(RuntimeError):
pass
class AsyncCall(object):
def __init__(self, fnc, callback = None):
self.Callable = fnc
self.Callback = callback
def __call__(self, *args, **kwargs):
self.Thread = threading.Thread(target = self.run, name = self.Callable.__name__, args = args, kwargs = kwargs)
self.Thread.start()
return self
def wait(self, timeout = None):
self.Thread.join(timeout)
if self.Thread.isAlive():
raise TimeoutError()
else:
return self.Result
def run(self, *args, **kwargs):
self.Result = self.Callable(*args, **kwargs)
if self.Callback:
self.Callback(self.Result)
class AsyncMethod(object):
def __init__(self, fnc, callback=None):
self.Callable = fnc
self.Callback = callback
def __call__(self, *args, **kwargs):
return AsyncCall(self.Callable, self.Callback)(*args, **kwargs)
def Async(fnc = None, callback = None):
if fnc == None:
def AddAsyncCallback(fnc):
return AsyncMethod(fnc, callback)
return AddAsyncCallback
else:
return AsyncMethod(fnc, callback)
And works exactly as requested:
@Async
def fnc():
pass
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With