Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Asynchronous method call in Python?

People also ask

What is asynchronous call in Python?

Asynchronous programming is a type of programming in which we can execute more than one task without blocking the Main task (function). In Python, there are many ways to execute more than one function concurrently, one of the ways is by using asyncio.

How do you call an asynchronous API in Python?

We can write asynchronous code with Python by using a library called Asyncio, though. Python has another library called Aiohttp that is an HTTP client and server based on Asyncio. Thus, we can use Asyncio to create asynchronous API calls. This is useful for optimizing code.

How do you call async method?

The simplest way to execute a method asynchronously is to start executing the method by calling the delegate's BeginInvoke method, do some work on the main thread, and then call the delegate's EndInvoke method. EndInvoke might block the calling thread because it does not return until the asynchronous call completes.


Something like:

import threading

thr = threading.Thread(target=foo, args=(), kwargs={})
thr.start() # Will run "foo"
....
thr.is_alive() # Will return whether foo is running currently
....
thr.join() # Will wait till "foo" is done

See the documentation at https://docs.python.org/library/threading.html for more details.


You can use the multiprocessing module added in Python 2.6. You can use pools of processes and then get results asynchronously with:

apply_async(func[, args[, kwds[, callback]]])

E.g.:

from multiprocessing import Pool

def f(x):
    return x*x

if __name__ == '__main__':
    pool = Pool(processes=1)              # Start a worker processes.
    result = pool.apply_async(f, [10], callback) # Evaluate "f(10)" asynchronously calling callback when finished.

This is only one alternative. This module provides lots of facilities to achieve what you want. Also it will be really easy to make a decorator from this.


As of Python 3.5, you can use enhanced generators for async functions.

import asyncio
import datetime

Enhanced generator syntax:

@asyncio.coroutine
def display_date(loop):
    end_time = loop.time() + 5.0
    while True:
        print(datetime.datetime.now())
        if (loop.time() + 1.0) >= end_time:
            break
        yield from asyncio.sleep(1)


loop = asyncio.get_event_loop()
# Blocking call which returns when the display_date() coroutine is done
loop.run_until_complete(display_date(loop))
loop.close()

New async/await syntax:

async def display_date(loop):
    end_time = loop.time() + 5.0
    while True:
        print(datetime.datetime.now())
        if (loop.time() + 1.0) >= end_time:
            break
        await asyncio.sleep(1)


loop = asyncio.get_event_loop()
# Blocking call which returns when the display_date() coroutine is done
loop.run_until_complete(display_date(loop))
loop.close()

It's not in the language core, but a very mature library that does what you want is Twisted. It introduces the Deferred object, which you can attach callbacks or error handlers ("errbacks") to. A Deferred is basically a "promise" that a function will have a result eventually.


You can implement a decorator to make your functions asynchronous, though that's a bit tricky. The multiprocessing module is full of little quirks and seemingly arbitrary restrictions – all the more reason to encapsulate it behind a friendly interface, though.

from inspect import getmodule
from multiprocessing import Pool


def async(decorated):
    r'''Wraps a top-level function around an asynchronous dispatcher.

        when the decorated function is called, a task is submitted to a
        process pool, and a future object is returned, providing access to an
        eventual return value.

        The future object has a blocking get() method to access the task
        result: it will return immediately if the job is already done, or block
        until it completes.

        This decorator won't work on methods, due to limitations in Python's
        pickling machinery (in principle methods could be made pickleable, but
        good luck on that).
    '''
    # Keeps the original function visible from the module global namespace,
    # under a name consistent to its __name__ attribute. This is necessary for
    # the multiprocessing pickling machinery to work properly.
    module = getmodule(decorated)
    decorated.__name__ += '_original'
    setattr(module, decorated.__name__, decorated)

    def send(*args, **opts):
        return async.pool.apply_async(decorated, args, opts)

    return send

The code below illustrates usage of the decorator:

@async
def printsum(uid, values):
    summed = 0
    for value in values:
        summed += value

    print("Worker %i: sum value is %i" % (uid, summed))

    return (uid, summed)


if __name__ == '__main__':
    from random import sample

    # The process pool must be created inside __main__.
    async.pool = Pool(4)

    p = range(0, 1000)
    results = []
    for i in range(4):
        result = printsum(i, sample(p, 100))
        results.append(result)

    for result in results:
        print("Worker %i: sum value is %i" % result.get())

In a real-world case I would ellaborate a bit more on the decorator, providing some way to turn it off for debugging (while keeping the future interface in place), or maybe a facility for dealing with exceptions; but I think this demonstrates the principle well enough.


Just

import threading, time

def f():
    print "f started"
    time.sleep(3)
    print "f finished"

threading.Thread(target=f).start()

My solution is:

import threading

class TimeoutError(RuntimeError):
    pass

class AsyncCall(object):
    def __init__(self, fnc, callback = None):
        self.Callable = fnc
        self.Callback = callback

    def __call__(self, *args, **kwargs):
        self.Thread = threading.Thread(target = self.run, name = self.Callable.__name__, args = args, kwargs = kwargs)
        self.Thread.start()
        return self

    def wait(self, timeout = None):
        self.Thread.join(timeout)
        if self.Thread.isAlive():
            raise TimeoutError()
        else:
            return self.Result

    def run(self, *args, **kwargs):
        self.Result = self.Callable(*args, **kwargs)
        if self.Callback:
            self.Callback(self.Result)

class AsyncMethod(object):
    def __init__(self, fnc, callback=None):
        self.Callable = fnc
        self.Callback = callback

    def __call__(self, *args, **kwargs):
        return AsyncCall(self.Callable, self.Callback)(*args, **kwargs)

def Async(fnc = None, callback = None):
    if fnc == None:
        def AddAsyncCallback(fnc):
            return AsyncMethod(fnc, callback)
        return AddAsyncCallback
    else:
        return AsyncMethod(fnc, callback)

And works exactly as requested:

@Async
def fnc():
    pass