One of the reasons async was praised for ASP.NET was to follow Nodejs async platform which led to more scalability with the freeing up of threads to handle subsequent requests etc.
However, I've since read that wrapping CPU-bound code in Task.Run will have the opposite effect i.e. add even more overhead to a server and use more threads.
Apparently, only true async operations will benefit e.g. making a web-request or a call to a database.
So, my question is as follows. Is there any clear guidance out there as to when action methods should be async?
The async keyword represents a hint that you can use to mark methods as task-based asynchronous methods. The combination of await, async, and the Task object makes it much easier for you to write asynchronous code in . NET 4.5. The new model for asynchronous methods is called the Task-based Asynchronous Pattern (TAP).
Asynchronous APIs allow a small pool of threads to handle thousands of concurrent requests by not waiting on blocking calls. Rather than waiting on a long-running synchronous task to complete, the thread can work on another request.
When we don't want to return a result from our async method, we should always return a Task. To validate our asynchronous operations, we have to use the await keyword while calling that operation. When we convert our synchronous code to asynchronous, we have to use the async and await keywords all the way up the chain.
An async keyword is a method that performs asynchronous tasks such as fetching data from a database, reading a file, etc, they can be marked as “async”. Whereas await keyword making “await” to a statement means suspending the execution of the async method it is residing in until the asynchronous task completes.
Mr Cleary is the one who opined about the fruitlessness of wrapping CPU-bound operations in async code.
Not exactly, there is a difference between wrapping CPU-bound async code in an ASP.NET app and doing that in a - for example - WPF desktop app. Let me use this statement of yours to build my answer upon.
You should categorize the async operations in your mind (in its simplest form) as such:
I assume that by reading Stephen Cleary's posts you've already got to understand that the way async operations work is that when you are doing a CPU-bound operation then that operation is passed on to a thread pool thread and upon completion, the program control returns to the thread it was started from (unless you do a .ConfigureAwait(false)
call). Of course this only happens if there actually is an asynchronous operation to do, as I was wondering myself as well in this question.
When it comes to blocking operations on the other hand, things are a bit different. In this case, when the thread from which the code performed asynchronously gets blocked, then the runtime notices it, and "suspends" the work being done by that thread: saves all state so it can continue later on and then that thread is used to perform other operations. When the blocking operation is ready - for example, the answer to a network call has arrived - then (I don't exactly know how it is handled or noticed by the runtime, but I am trying to provide you with a high-level explanation, so it is not absolutely necessary) the runtime knows that the operation you initiated is ready to continue, the state is restored and your code can continue to run.
With these said, there is an important difference between the two:
When it comes to a directly-user-facing application, for example, a WPF app, if you are performing a long-running CPU-operation on the main thread (GUI thread), then the GUI thread is obviously busy and therefore appears unresponsive towards the user because any interaction that is normally handled by the GUI thread just gets queued up in the message queue and doesn't get processed until the CPU-bound operation finishes.
In the case of an ASP.NET app, however, this is not an issue, because the application does not directly face the user, so he does not see that it is unresponsive. Why you don't gain anything by delegating the work to another thread is because that would still occupy a thread, that could otherwise do other work, because, well, whatever needs to be done must be done, it just cannot magically be done for you.
Think of it the following way: you are in a kitchen with a friend (you and your friend are one-one threads). You two are preparing food being ordered. You can tell your friend to dice up onions, and even though you free yourself from dicing onions, and can deal with the seasoning of the meat, your friend gets busy by dicing the onions and so he cannot do the seasoning of the meat meanwhile. If you hadn't delegated the work of dicing onions to him (which you already started) but let him do the seasoning, the same work would have been done, except that you would have saved a bit of time because you wouldn't have needed to swap the working context (the cutting boards and knives in this example). So simply put, you are just causing a bit of overhead by swapping contexts whereas the issue of unresponsiveness is invisible towards the user. (The customer neither sees nor cares which of you do which work as long as (s)he receives the result).
With that said, the categorization I've outlined at the top could be refined by replacing ASP.NET applications with "whatever application has no directly visible interface towards the user and therefore cannot appear unresponsive towards them".
ASP.NET requests are handled in thread pool threads. So are CPU-bound async operations (Task.Run
).
Dispatching async calls to a thread pool thread in ASP.NET will result in returning a thread pool thread to the thread pool and getting a another. one to run the code and, in the end, returning that thread to the thread pool and getting a another one to get back to the ASP.NET context. There will be a lot of thread switching, thread pool management and ASP.NET context management going on that will make that request (and the whole application) slower.
Most of the times one comes up with a reason to do this on a web application ends up being because the web applications is doing something that it shouldn't.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With