In my code, assuming C is the capacity, N is the amount of items, w[j] is the weight of item j, and v[j] is the value of item j, does it do the same thing as the 0-1 knapsack algorithm? I've been trying my code on some data sets, and it seems to be the case. The reason I'm wondering this is because the 0-1 knapsack algorithm we've been taught is 2-dimensional, whereas this is 1-dimensional:
for (int j = 0; j < N; j++) {
if (C-w[j] < 0) continue;
for (int i = C-w[j]; i >= 0; --i) { //loop backwards to prevent double counting
dp[i + w[j]] = max(dp[i + w[j]], dp[i] + v[j]); //looping fwd is for the unbounded problem
}
}
printf( "max value without double counting (loop backwards) %d\n", dp[C]);
Here is my implementation of the 0-1 knapsack algorithm: (with the same variables)
for (int i = 0; i < N; i++) {
for (int j = 0; j <= C; j++) {
if (j - w[i] < 0) dp2[i][j] = i==0?0:dp2[i-1][j];
else dp2[i][j] = max(i==0?0:dp2[i-1][j], dp2[i-1][j-w[i]] + v[i]);
}
}
printf("0-1 knapsack: %d\n", dp2[N-1][C]);
Yes, your algorithm gets you the same result. This enhancement to the classic 0-1 Knapsack is reasonably popular: Wikipedia explains it as follows:
Additionally, if we use only a 1-dimensional array m[w] to store the current optimal values and pass over this array i + 1 times, rewriting from m[W] to m[1] every time, we get the same result for only O(W) space.
Note that they specifically mention your backward loop.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With