Are there any Linear Regression Function in SQL Server 2005/2008, similar to the the Linear Regression functions in Oracle ?
Simple Linear Regression is handy for the SQL Programmer in making a prediction of a linear trend and giving a figure for the level probability for the prediction, and what is more, they are easy to do with the aggregation that is built into SQL.
You could calculate R Squared by hand and create a variable 'R2' equal to (Nxysum - xsumysum)^2/ (Nx2sum - xsumxsum) (Ny2sum - ysumysum)? Where xsum and ysum are the sum of your values and N is the number of observations. You can apply the same logic to T-SQL.
We have added 5 new functions in the latest release of XLeratorDB / statistics 2008. Four of these functions, LOGIT, LOGITSUM, LOGITPRED, and LOGITPROB are SQL Server implementations of the logistic regression, often referred to as the logit regression.
Linear regression is the type of regression that forms a relationship between the target variable and one or more independent variables utilizing a straight line. The given equation represents the equation of linear regression. Y = a + b*X + e. Where, a represents the intercept.
To the best of my knowledge, there is none. Writing one is pretty straightforward, though. The following gives you the constant alpha and slope beta for y = Alpha + Beta * x + epsilon:
-- test data (GroupIDs 1, 2 normal regressions, 3, 4 = no variance) WITH some_table(GroupID, x, y) AS ( SELECT 1, 1, 1 UNION SELECT 1, 2, 2 UNION SELECT 1, 3, 1.3 UNION SELECT 1, 4, 3.75 UNION SELECT 1, 5, 2.25 UNION SELECT 2, 95, 85 UNION SELECT 2, 85, 95 UNION SELECT 2, 80, 70 UNION SELECT 2, 70, 65 UNION SELECT 2, 60, 70 UNION SELECT 3, 1, 2 UNION SELECT 3, 1, 3 UNION SELECT 4, 1, 2 UNION SELECT 4, 2, 2), -- linear regression query /*WITH*/ mean_estimates AS ( SELECT GroupID ,AVG(x * 1.) AS xmean ,AVG(y * 1.) AS ymean FROM some_table GROUP BY GroupID ), stdev_estimates AS ( SELECT pd.GroupID -- T-SQL STDEV() implementation is not numerically stable ,CASE SUM(SQUARE(x - xmean)) WHEN 0 THEN 1 ELSE SQRT(SUM(SQUARE(x - xmean)) / (COUNT(*) - 1)) END AS xstdev , SQRT(SUM(SQUARE(y - ymean)) / (COUNT(*) - 1)) AS ystdev FROM some_table pd INNER JOIN mean_estimates pm ON pm.GroupID = pd.GroupID GROUP BY pd.GroupID, pm.xmean, pm.ymean ), standardized_data AS -- increases numerical stability ( SELECT pd.GroupID ,(x - xmean) / xstdev AS xstd ,CASE ystdev WHEN 0 THEN 0 ELSE (y - ymean) / ystdev END AS ystd FROM some_table pd INNER JOIN stdev_estimates ps ON ps.GroupID = pd.GroupID INNER JOIN mean_estimates pm ON pm.GroupID = pd.GroupID ), standardized_beta_estimates AS ( SELECT GroupID ,CASE WHEN SUM(xstd * xstd) = 0 THEN 0 ELSE SUM(xstd * ystd) / (COUNT(*) - 1) END AS betastd FROM standardized_data pd GROUP BY GroupID ) SELECT pb.GroupID ,ymean - xmean * betastd * ystdev / xstdev AS Alpha ,betastd * ystdev / xstdev AS Beta FROM standardized_beta_estimates pb INNER JOIN stdev_estimates ps ON ps.GroupID = pb.GroupID INNER JOIN mean_estimates pm ON pm.GroupID = pb.GroupID
Here GroupID
is used to show how to group by some value in your source data table. If you just want the statistics across all data in the table (not specific sub-groups), you can drop it and the joins. I have used the WITH
statement for sake of clarity. As an alternative, you can use sub-queries instead. Please be mindful of the precision of the data type used in your tables as the numerical stability can deteriorate quickly if the precision is not high enough relative to your data.
EDIT: (in answer to Peter's question for additional statistics like R2 in the comments)
You can easily calculate additional statistics using the same technique. Here is a version with R2, correlation, and sample covariance:
-- test data (GroupIDs 1, 2 normal regressions, 3, 4 = no variance) WITH some_table(GroupID, x, y) AS ( SELECT 1, 1, 1 UNION SELECT 1, 2, 2 UNION SELECT 1, 3, 1.3 UNION SELECT 1, 4, 3.75 UNION SELECT 1, 5, 2.25 UNION SELECT 2, 95, 85 UNION SELECT 2, 85, 95 UNION SELECT 2, 80, 70 UNION SELECT 2, 70, 65 UNION SELECT 2, 60, 70 UNION SELECT 3, 1, 2 UNION SELECT 3, 1, 3 UNION SELECT 4, 1, 2 UNION SELECT 4, 2, 2), -- linear regression query /*WITH*/ mean_estimates AS ( SELECT GroupID ,AVG(x * 1.) AS xmean ,AVG(y * 1.) AS ymean FROM some_table pd GROUP BY GroupID ), stdev_estimates AS ( SELECT pd.GroupID -- T-SQL STDEV() implementation is not numerically stable ,CASE SUM(SQUARE(x - xmean)) WHEN 0 THEN 1 ELSE SQRT(SUM(SQUARE(x - xmean)) / (COUNT(*) - 1)) END AS xstdev , SQRT(SUM(SQUARE(y - ymean)) / (COUNT(*) - 1)) AS ystdev FROM some_table pd INNER JOIN mean_estimates pm ON pm.GroupID = pd.GroupID GROUP BY pd.GroupID, pm.xmean, pm.ymean ), standardized_data AS -- increases numerical stability ( SELECT pd.GroupID ,(x - xmean) / xstdev AS xstd ,CASE ystdev WHEN 0 THEN 0 ELSE (y - ymean) / ystdev END AS ystd FROM some_table pd INNER JOIN stdev_estimates ps ON ps.GroupID = pd.GroupID INNER JOIN mean_estimates pm ON pm.GroupID = pd.GroupID ), standardized_beta_estimates AS ( SELECT GroupID ,CASE WHEN SUM(xstd * xstd) = 0 THEN 0 ELSE SUM(xstd * ystd) / (COUNT(*) - 1) END AS betastd FROM standardized_data GROUP BY GroupID ) SELECT pb.GroupID ,ymean - xmean * betastd * ystdev / xstdev AS Alpha ,betastd * ystdev / xstdev AS Beta ,CASE ystdev WHEN 0 THEN 1 ELSE betastd * betastd END AS R2 ,betastd AS Correl ,betastd * xstdev * ystdev AS Covar FROM standardized_beta_estimates pb INNER JOIN stdev_estimates ps ON ps.GroupID = pb.GroupID INNER JOIN mean_estimates pm ON pm.GroupID = pb.GroupID
EDIT 2 improves numerical stability by standardizing data (instead of only centering) and by replacing STDEV
because of numerical stability issues. To me, the current implementation seems to be the best trade-off between stability and complexity. I could improve stability by replacing my standard deviation with a numerically stable online algorithm, but this would complicate the implementation substantantially (and slow it down). Similarly, implementations using e.g. Kahan(-Babuška-Neumaier) compensations for the SUM
and AVG
seem to perform modestly better in limited tests, but make the query much more complex. And as long as I do not know how T-SQL implements SUM
and AVG
(e.g. it might already be using pairwise summation), I cannot guarantee that such modifications always improve accuracy.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With