SURF is patented, as is SIFT. ORB and BRIEF are not patented, but their features are not scale-invariant, seriously limiting their usefulness in complex scenarios.
Are there any feature extractors that can extract scale-invariant features as fast as SURF and are not so strictly patented as SURF and SIFT?
The SIFT features are local and based on the appearance of the object at particular interest points, and are invariant to image scale and rotation. They are also robust to changes in illumination, noise, and minor changes in viewpoint.
The SURF method (Speeded Up Robust Features) is a fast and robust algorithm for local, similarity invariant representation and comparison of images. Similarly to many other local descriptor-based approaches, interest points of a given image are defined as salient features from a scale-invariant representation.
This means that it finds the scale of the image which the feature will produce the highest response. Then, the descriptor is calculated in that scale. So when you use a smaller/larger version, it should still find the same scale for the feature.
The scale-invariant feature transform (SIFT) is an algorithm used to detect and describe local features in digital images. It locates certain key points and then furnishes them with quantitative information (so-called descriptors) which can for example be used for object recognition.
Although you already choose BRISK, you might find FREAK interesting. Author claims to have better results than BRISK and ORB. I should also add that ORB is scale-invariant but has some problems in that area. So I would still recommend it for someone to try it.
The FREAK source code is compatible with OpenCV (how easy it is to merge them I do not know) and the author is working on submitting it to the OpenCV project.
EDIT:
FREAK is now part of opencv feature detectors / descriptors.
You can read here more about the differences between several feature detectors/extractors, and also a series of benchmarks which includes FREAK and other popular ones.
FREAK is supposed to be the fastest scale and rotation invariant descriptor extractor, it is open source and you can use it easily as it is implemented in OpenCV. You need a binary matcher that uses the Hamming Distance, like the BruteForceMatcher.
Here you have an example on how to use it, easily replaceble by SIFT descriptor.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With