Say I have two variadic templates; typename... T, typename... U
, how would I go about finding their;
So from what I understand, the concatenation is simple; (t..., u...)
, but what about finding the maximal common sub-sequence of the two? - is it even possible?
Here is a solution that computes set operations on pairs of tuple types. I assume tuples can be used to hold the variable argument packs, so that once you have Ts...
and Us...
, you do:
typename tuple_intersect<std::tuple<Ts...>, std::tuple<Us...>>::type
And this gives you a tuple, where Vs...
is the intersection of Ts...
and Us...
. If you need to extract Vs...
as an argument pack again, just provide the tuple as the input of a function which accepts a tuple<Ts...>
:
template<typename... Vs>
void func(std::tuple<Vs...>)
{
// Here, you have Vs... (= Us... & Ts...) as an argument pack
}
Framework:
Here are some simple meta-functions which are common to all the main meta-functions below:
template<typename T, typename... Ts>
struct is_member_of_type_seq { static const bool value = false; };
template<typename T, typename U, typename... Ts>
struct is_member_of_type_seq<T, U, Ts...>
{
static const bool value = std::conditional<
std::is_same<T, U>::value,
std::true_type,
is_member_of_type_seq<T, Ts...>
>::type::value;
};
template<typename, typename>
struct append_to_type_seq { };
template<typename T, typename... Ts>
struct append_to_type_seq<T, std::tuple<Ts...>>
{
using type = std::tuple<Ts..., T>;
};
template<typename, typename>
struct prepend_to_type_seq { };
template<typename T, typename... Ts>
struct prepend_to_type_seq<T, std::tuple<Ts...>>
{
using type = std::tuple<T, Ts...>;
};
1 - Concatenation
This one is pretty simple:
template<typename, typename>
struct concat_type_seq { };
template<typename... Ts, typename... Us>
struct concat_type_seq<std::tuple<Ts...>, std::tuple<Us...>>
{
using type = std::tuple<Ts..., Us...>;
};
And some testing:
static_assert(
std::is_same<
concat_type_seq<
std::tuple<char, int, bool>,
std::tuple<double, double, int>
>::type,
std::tuple<char, int, bool, double, double, int>
>::value,
"Error"
);
2 - Longest common subsequence
This one is slightly more complicated:
namespace detail
{
// Meta-function that returns, given two sequences S1 and S2, the longest
// subsequence of S1 in S2 that starts with the first element of S1 and
// begins at the first element of S2 (in other words, it returns the
// subsequence S2[0]..S2[N] such that S1[i] = S2[i] for each 0 <= i <= N.
template<typename, typename>
struct match_seq_in_seq_from_start
{
using type = std::tuple<>;
};
template<typename T, typename U, typename... Ts, typename... Us>
struct match_seq_in_seq_from_start<std::tuple<T, Ts...>, std::tuple<U, Us...>>
{
using type = typename std::conditional<
std::is_same<T, U>::value,
typename prepend_to_type_seq<
T,
typename match_seq_in_seq_from_start<
std::tuple<Ts...>,
std::tuple<Us...>
>::type
>::type,
std::tuple<>
>::type;
};
// Some testing...
static_assert(
std::is_same<
match_seq_in_seq_from_start<
std::tuple<int, double, char>,
std::tuple<int, double, long>
// ^^^^^^^^^^^
>::type,
std::tuple<int, double>
>::value,
"Error!"
);
// Meta-function that returns the same as the meta-function above,
// but starting from the first element of S2 which is identical to
// the first element of S1.
template<typename, typename>
struct match_first_seq_in_seq
{
using type = std::tuple<>;
};
template<typename T, typename U, typename... Ts, typename... Us>
struct match_first_seq_in_seq<std::tuple<T, Ts...>, std::tuple<U, Us...>>
{
using type = typename std::conditional<
std::is_same<T, U>::value,
typename match_seq_in_seq_from_start<
std::tuple<T, Ts...>,
std::tuple<U, Us...>
>::type,
typename match_first_seq_in_seq<
std::tuple<T, Ts...>,
std::tuple<Us...>
>::type
>::type;
};
// Some testing...
static_assert(
std::is_same<
match_first_seq_in_seq<
std::tuple<int, double, char>,
std::tuple<bool, char, int, double, long, int, double, char>
// ^^^^^^^^^^^
>::type,
std::tuple<int, double>
>::value,
"Error!"
);
// Meta-function that returns, given two sequences S1 and S2, the longest
// subsequence of S1 in S2 that starts with the first element of S1.
template<typename T, typename U>
struct match_seq_in_seq
{
using type = std::tuple<>;
};
template<typename U, typename... Ts, typename... Us>
struct match_seq_in_seq<std::tuple<Ts...>, std::tuple<U, Us...>>
{
using type1 = typename match_first_seq_in_seq<
std::tuple<Ts...>,
std::tuple<U, Us...>
>::type;
using type2 = typename match_seq_in_seq<
std::tuple<Ts...>,
std::tuple<Us...>
>::type;
using type = typename std::conditional<
(std::tuple_size<type1>::value > std::tuple_size<type2>::value),
type1,
type2
>::type;
};
// Some testing...
static_assert(
std::is_same<
match_seq_in_seq<
std::tuple<int, double, char>,
std::tuple<char, int, double, long, int, double, char>
// ^^^^^^^^^^^^^^^^^
>::type,
std::tuple<int, double, char>
>::value,
"Error!"
);
}
// Meta-function that returns, given two sequences S1 and S2, the longest
// subsequence of S1 in S2 (longest common subsequence).
template<typename T, typename U>
struct max_common_subseq
{
using type = std::tuple<>;
};
template<typename T, typename... Ts, typename... Us>
struct max_common_subseq<std::tuple<T, Ts...>, std::tuple<Us...>>
{
using type1 = typename detail::match_seq_in_seq<
std::tuple<T, Ts...>,
std::tuple<Us...>
>::type;
using type2 = typename max_common_subseq<
std::tuple<Ts...>,
std::tuple<Us...>
>::type;
using type = typename std::conditional<
(std::tuple_size<type1>::value > std::tuple_size<type2>::value),
type1,
type2
>::type;
};
And some testing:
// Some testing...
static_assert(
std::is_same<
max_common_subseq<
std::tuple<int, double, char>,
std::tuple<char, int, char, double, char, long, int, bool, double>
>::type,
std::tuple<double, char>
>::value,
"Error!"
);
// Some more testing...
static_assert(
std::is_same<
max_common_subseq<
std::tuple<int, double, char, long, long, bool>,
// ^^^^^^^^^^^^^^^^
std::tuple<char, long, long, double, double, char>
// ^^^^^^^^^^^^^^^^
>::type,
std::tuple<char, long, long>
>::value,
"Error!"
);
3 - Inversion
Here is a trait for inverting a type sequence (returns a tuple with inverted type list):
template<typename... Ts>
struct revert_type_seq
{
using type = std::tuple<>;
};
template<typename T, typename... Ts>
struct revert_type_seq<T, Ts...>
{
using type = typename append_to_type_seq<
T,
typename revert_type_seq<Ts...>::type
>::type;
};
And some testing:
// Some testing...
static_assert(
std::is_same<
revert_type_seq<char, int, bool>::type,
std::tuple<bool, int, char>
>::value,
"Error"
);
4 - Intersection
This one was not requested, but is provided as a bonus:
template<typename, typename>
struct intersect_type_seq
{
using type = std::tuple<>;
};
template<typename T, typename... Ts, typename... Us>
struct intersect_type_seq<std::tuple<T, Ts...>, std::tuple<Us...>>
{
using type = typename std::conditional<
!is_member_of_type_seq<T, Us...>::value,
typename intersect_type_seq<
std::tuple<Ts...>,
std::tuple<Us...>>
::type,
typename prepend_to_type_seq<
T,
typename intersect_type_seq<
std::tuple<Ts...>,
std::tuple<Us...>
>::type
>::type
>::type;
};
And some testing:
// Some testing...
static_assert(
std::is_same<
intersect_type_seq<
std::tuple<char, int, bool, double>,
std::tuple<bool, long, double, float>
>::type,
std::tuple<bool, double>
>::value,
"Error!"
);
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With