I'll start my question by providing some context about what we're doing and the problems we're facing.
Right now, we don't have a strategy to limit or throttle the amount of requests that a tenant can make on a given period of time. Taken into account the last two considerations from above, it's easy to see this is a problem, since it's almost trivial for a tenant to make more requests than we can handle, causing a degradation on the quality of service (even for other tenants because of the shared resources approach).
We're thinking of strategies to limit/throttle or in general prepare the system to "isolate" tenants, so one tenant can not degrade the performance for others by making more requests than we can handle:
Right now, we're inclined to take option 4. We want to implement the request throttling (traffic shaping) in such a way that all requests made within a previously agreed rate with the tenant (enforced by contract) would be passed along to the services without delay. Since we know in advance how many requests per minute each tenant is gonna be making (estimated at least) we can size our infrastructure accordingly (plus a safety margin).
If a burst arrives, the excess requests would be queued (up to a limit) and then released at a fixed rate (using the leaky bucket or similar algorithm). This would ensure that a tenant can not impact the performance of other tenants, since requests will hit the services at a predefined rate. Ideally, the allowed request rate would be "dynamic" in such a way that a tenant can use some of the "requests per minute" of other tenants that are not using them (within safety limits). I believe this is called the "Dynamic Rate Leaky Bucket" algorithm. The goal is to maximize resource usage.
My questions are:
Thank you very much, Mikel.
Managing request queue on Gateway side is indeed tricky thing, and probably the main reason why it is not implemented in this Gateways, is that it is really hard to do right. You need to handle all the distributed system cases, and in addition, it hard makes it "safe", because "slow" clients quickly consume machine resources.
Such pattern usually offloaded to client libraries, so when client hits rate limit status code, it uses smth like exponential backoff technique to retry requests. It is way easier to scale and implement.
Can't say for Kong, but Tyk, in this case, provides two basic numbers you can control, quota - maximum number of requests client can make in given period of time, and rate limits - safety protection. You can set rate limit 1) per "policy", e.g for group of consumers (for example if you have multiple tiers of your service, with different allowed usage/rate limits), 2) per individual key 3) Globally for API (works together with key rate limits). So for example, you can set some moderate client rate limits, and cap total limit with global API setting.
If you want fully dynamic scheme, and re-calculate limits based on cluster load, it should be possible. You will need to write and run this scheduler somewhere, from time to time it will perform re-calculation, based on current total usage (which Tyk calculate for you, and you get it from Redis) and will talk with Tyk API, by iterating through all keys (or policies) and dynamically updating their rate limits.
Hope it make sense :)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With