i'm having some troubles using Apache TIKA (version 1.10). I got some PDF files which are just scanned pieces of paper. That means each page is just an image. My goal is to extract the text of the PDF files anyway.
My tesseract is set up correctly and extracting JPG and PNG files works like a charm. The code i'm using looks like that (don't mind the missing excetion handling):
public String extractText(InputStream stream) {
AutoDetectParser parser = new AutoDetectParser();
BodyContentHandler handler = new BodyContentHandler(Integer.MAX_VALUE);
Metadata metadata = new Metadata();
ParseContext context = new ParseContext();
parser.parse(stream, handler, metadata, context);
String text = handler.toString();
return text;
}
I searched a lot but i didn't find any solutions that work for me. I already tried the setExtractInlineImages
method of the PDFParserConfig
class but this didn't change a thing.
Extracting embedded documents using a custom ParsingEmbeddedDocumentExtractor
did extract embedded resources of a doc file but not for my PDF files.
It would be awesome if anyone of you could provide some help :)
With TIKA-93 you can now use the awesome Tesseract OCR parser within Tika!
There are many applications to what OCR can do in term of document intelligence. Using pytesseract, one can extract almost all the data irrespective of the format of the documents (whether its a scanned document or a pdf or a simple jpeg image).
Extract Text from an Image PDFSelect the text you want to extract and right-click on it to choose "Copy." Alternatively, you can also convert your PDF to Word format. Click on the "To Word" button under the "Convert" tab. In the pop-up window, click on the "Save" button to convert your PDF to Word format.
Tim Allison brought the solution:
Parser parser = new AutoDetectParser();
BodyContentHandler handler = new BodyContentHandler(Integer.MAX_VALUE);
TesseractOCRConfig config = new TesseractOCRConfig();
PDFParserConfig pdfConfig = new PDFParserConfig();
pdfConfig.setExtractInlineImages(true);
ParseContext parseContext = new ParseContext();
parseContext.set(TesseractOCRConfig.class, config);
parseContext.set(PDFParserConfig.class, pdfConfig);
parseContext.set(Parser.class, parser); //need to add this to make sure recursive parsing happens!
parser.parse(stream, handler, new Metadata(), parseContext);
This works for me :)
EDIT: Here is the complete solution:
import org.apache.tika.exception.TikaException;
import org.apache.tika.metadata.Metadata;
import org.apache.tika.parser.AutoDetectParser;
import org.apache.tika.parser.ParseContext;
import org.apache.tika.parser.Parser;
import org.apache.tika.parser.ocr.TesseractOCRConfig;
import org.apache.tika.parser.pdf.PDFParserConfig;
import org.apache.tika.sax.BodyContentHandler;
import org.xml.sax.SAXException;
import java.io.FileInputStream;
import java.io.IOException;
/**
* @since 8/26/16
*/
public class Sample {
public static void main(String[] args)
throws IOException, TikaException, SAXException {
Parser parser = new AutoDetectParser();
BodyContentHandler handler = new BodyContentHandler(Integer.MAX_VALUE);
TesseractOCRConfig config = new TesseractOCRConfig();
PDFParserConfig pdfConfig = new PDFParserConfig();
pdfConfig.setExtractInlineImages(true);
ParseContext parseContext = new ParseContext();
parseContext.set(TesseractOCRConfig.class, config);
parseContext.set(PDFParserConfig.class, pdfConfig);
//need to add this to make sure recursive parsing happens!
parseContext.set(Parser.class, parser);
FileInputStream stream = new FileInputStream("samplepdf.pdf");
Metadata metadata = new Metadata();
parser.parse(stream, handler, metadata, parseContext);
System.out.println(metadata);
String content = handler.toString();
System.out.println("===============");
System.out.println(content);
System.out.println("Done");
}
}
Maven Dependencies:
<dependencies>
<dependency>
<groupId>org.apache.tika</groupId>
<artifactId>tika-parsers</artifactId>
<version>1.13</version>
</dependency>
<dependency>
<groupId>com.levigo.jbig2</groupId>
<artifactId>levigo-jbig2-imageio</artifactId>
<version>1.6.5</version>
</dependency>
</dependencies>
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With