This is most similar to this question.
I am creating a pipeline in Dataflow 2.x that takes streaming input from a Pubsub queue. Every single message that comes in needs to be streamed through a very large dataset that comes from Google BigQuery and have all the relevant values attached to it (based on a key) before being written to a database.
The trouble is that the mapping dataset from BigQuery is very large - any attempt to use it as a side input fails with the Dataflow runners throwing the error "java.lang.IllegalArgumentException: ByteString would be too long". I have attempted the following strategies:
1) Side input
2) Key-Value pair mapping
3) Calling BQ directly in a ParDo (DoFn)
It seems this task doesn't really fit the "embarrassingly parallelizable" model, so am I barking up the wrong tree here?
EDIT :
Even when using a high memory machine in dataflow and attempting to make the side input into a map view, I get the error java.lang.IllegalArgumentException: ByteString would be too long
Here is an example (psuedo) of the code I'm using:
Pipeline pipeline = Pipeline.create(options);
PCollectionView<Map<String, TableRow>> mapData = pipeline
.apply("ReadMapData", BigQueryIO.read().fromQuery("SELECT whatever FROM ...").usingStandardSql())
.apply("BQToKeyValPairs", ParDo.of(new BQToKeyValueDoFn()))
.apply(View.asMap());
PCollection<PubsubMessage> messages = pipeline.apply(PubsubIO.readMessages()
.fromSubscription(String.format("projects/%1$s/subscriptions/%2$s", projectId, pubsubSubscription)));
messages.apply(ParDo.of(new DoFn<PubsubMessage, TableRow>() {
@ProcessElement
public void processElement(ProcessContext c) {
JSONObject data = new JSONObject(new String(c.element().getPayload()));
String key = getKeyFromData(data);
TableRow sideInputData = c.sideInput(mapData).get(key);
if (sideInputData != null) {
LOG.info("holyWowItWOrked");
c.output(new TableRow());
} else {
LOG.info("noSideInputDataHere");
}
}
}).withSideInputs(mapData));
The pipeline throws the exception and fails before logging anything from within the ParDo
.
Stack trace:
java.lang.IllegalArgumentException: ByteString would be too long: 644959474+1551393497
com.google.cloud.dataflow.worker.repackaged.com.google.protobuf.ByteString.concat(ByteString.java:524)
com.google.cloud.dataflow.worker.repackaged.com.google.protobuf.ByteString.balancedConcat(ByteString.java:576)
com.google.cloud.dataflow.worker.repackaged.com.google.protobuf.ByteString.balancedConcat(ByteString.java:575)
com.google.cloud.dataflow.worker.repackaged.com.google.protobuf.ByteString.balancedConcat(ByteString.java:575)
com.google.cloud.dataflow.worker.repackaged.com.google.protobuf.ByteString.balancedConcat(ByteString.java:575)
com.google.cloud.dataflow.worker.repackaged.com.google.protobuf.ByteString.copyFrom(ByteString.java:559)
com.google.cloud.dataflow.worker.repackaged.com.google.protobuf.ByteString$Output.toByteString(ByteString.java:1006)
com.google.cloud.dataflow.worker.WindmillStateInternals$WindmillBag.persistDirectly(WindmillStateInternals.java:575)
com.google.cloud.dataflow.worker.WindmillStateInternals$SimpleWindmillState.persist(WindmillStateInternals.java:320)
com.google.cloud.dataflow.worker.WindmillStateInternals$WindmillCombiningState.persist(WindmillStateInternals.java:951)
com.google.cloud.dataflow.worker.WindmillStateInternals.persist(WindmillStateInternals.java:216)
com.google.cloud.dataflow.worker.StreamingModeExecutionContext$StepContext.flushState(StreamingModeExecutionContext.java:513)
com.google.cloud.dataflow.worker.StreamingModeExecutionContext.flushState(StreamingModeExecutionContext.java:363)
com.google.cloud.dataflow.worker.StreamingDataflowWorker.process(StreamingDataflowWorker.java:1000)
com.google.cloud.dataflow.worker.StreamingDataflowWorker.access$800(StreamingDataflowWorker.java:133)
com.google.cloud.dataflow.worker.StreamingDataflowWorker$7.run(StreamingDataflowWorker.java:771)
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
java.lang.Thread.run(Thread.java:745)
Check out the section called "Pattern: Streaming mode large lookup tables" in this article https://cloud.google.com/blog/products/gcp/guide-to-common-cloud-dataflow-use-case-patterns-part-2 (it might be the only viable solution since your side input doesn't fit into memory):
Description:
A large (in GBs) lookup table must be accurate, and changes often or does not fit in memory.
Example:
You have point of sale information from a retailer and need to associate the name of the product item with the data record which contains the productID. There are hundreds of thousands of items stored in an external database that can change constantly. Also, all elements must be processed using the correct value.
Solution:
Use the "Calling external services for data enrichment" pattern but rather than calling a micro service, call a read-optimized NoSQL database (such as Cloud Datastore or Cloud Bigtable) directly.
For each value to be looked up, create a Key Value pair using the KV utility class. Do a GroupByKey to create batches of the same key type to make the call against the database. In the DoFn, make a call out to the database for that key and then apply the value to all values by walking through the iterable. Follow best practices with client instantiation as described in "Calling external services for data enrichment".
Other relevant patterns are described in this article: https://cloud.google.com/blog/products/gcp/guide-to-common-cloud-dataflow-use-case-patterns-part-1:
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With