I'm trying to use ggplot to draw a graph comparing the absolute values of two variables, and also show the ratio between them. Since the ratio is unitless and the values are not, I can't show them on the same y-axis, so I'd like to stack vertically as two separate graphs with aligned x-axes.
Here's what I've got so far:
library(ggplot2)
library(dplyr)
library(gridExtra)
# Prepare some sample data.
results <- data.frame(index=(1:20))
results$control <- 50 * results$index
results$value <- results$index * 50 + 2.5*results$index^2 - results$index^3 / 8
results$ratio <- results$value / results$control
# Plot absolute values
plot_values <- ggplot(results, aes(x=index)) +
geom_point(aes(y=value, color="value")) +
geom_point(aes(y=control, color="control"))
# Plot ratios between values
plot_ratios <- ggplot(results, aes(x=index, y=ratio)) +
geom_point()
# Arrange the two plots above each other
grid.arrange(plot_values, plot_ratios, ncol=1, nrow=2)
The big problem is that the legend on the right of the first plot makes it a different size. A minor problem is that I'd rather not show the x-axis name and tick marks on the top plot, to avoid clutter and make it clear that they share the same axis.
I've looked at this question and its answers:
Align plot areas in ggplot
Unfortunately, neither answer there works well for me. Faceting doesn't seem a good fit, since I want to have completely different y scales for my two graphs. Manipulating the dimensions returned by ggplot_gtable seems more promising, but I don't know how to get around the fact that the two graphs have a different number of cells. Naively copying that code doesn't seem to change the resulting graph dimensions for my case.
Here's another similar question:
The perils of aligning plots in ggplot
The question itself seems to suggest a good option, but rbind.gtable complains if the tables have different numbers of columns, which is the case here due to the legend. Perhaps there's a way to slot in an extra empty column in the second table? Or a way to suppress the legend in the first graph and then re-add it to the combined graph?
An alternative & quite easy solution is as follows:
# loading needed packages
library(ggplot2)
library(dplyr)
library(tidyr)
# Prepare some sample data
results <- data.frame(index=(1:20))
results$control <- 50 * results$index
results$value <- results$index * 50 + 2.5*results$index^2 - results$index^3 / 8
results$ratio <- results$value / results$control
# reshape into long format
long <- results %>%
gather(variable, value, -index) %>%
mutate(facet = ifelse(variable=="ratio", "ratio", "values"))
long$facet <- factor(long$facet, levels=c("values", "ratio"))
# create the plot & remove facet labels with theme() elements
ggplot(long, aes(x=index, y=value, colour=variable)) +
geom_point() +
facet_grid(facet ~ ., scales="free_y") +
scale_colour_manual(breaks=c("control","value"), values=c("green", "red", "blue")) +
theme(axis.title.y=element_blank(), strip.text=element_blank(), strip.background=element_blank())
which gives:
Try this:
library(ggplot2)
library(gtable)
library(gridExtra)
AlignPlots <- function(...) {
LegendWidth <- function(x) x$grobs[[8]]$grobs[[1]]$widths[[4]]
plots.grobs <- lapply(list(...), ggplotGrob)
max.widths <- do.call(unit.pmax, lapply(plots.grobs, "[[", "widths"))
plots.grobs.eq.widths <- lapply(plots.grobs, function(x) {
x$widths <- max.widths
x
})
legends.widths <- lapply(plots.grobs, LegendWidth)
max.legends.width <- do.call(max, legends.widths)
plots.grobs.eq.widths.aligned <- lapply(plots.grobs.eq.widths, function(x) {
if (is.gtable(x$grobs[[8]])) {
x$grobs[[8]] <- gtable_add_cols(x$grobs[[8]],
unit(abs(diff(c(LegendWidth(x),
max.legends.width))),
"mm"))
}
x
})
plots.grobs.eq.widths.aligned
}
df <- data.frame(x = c(1:5, 1:5),
y = c(1:5, seq.int(5,1)),
type = factor(c(rep_len("t1", 5), rep_len("t2", 5))))
p1.1 <- ggplot(diamonds, aes(clarity, fill = cut)) + geom_bar()
p1.2 <- ggplot(df, aes(x = x, y = y, colour = type)) + geom_line()
plots1 <- AlignPlots(p1.1, p1.2)
do.call(grid.arrange, plots1)
p2.1 <- ggplot(diamonds, aes(clarity, fill = cut)) + geom_bar()
p2.2 <- ggplot(df, aes(x = x, y = y)) + geom_line()
plots2 <- AlignPlots(p2.1, p2.2)
do.call(grid.arrange, plots2)
Produces this:
// Based on multiple baptiste's answers
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With