Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Algorithm of boost::math::erf

are there any details available for the algorithm behind the erf-function of boost? The documentation of the module is not very precise. All I found out is that several methods are mixed. For me it looks like variations of Abramowitz and Stegun.

  • Which methods are mixed?
  • How are the methods mixed?
  • What is the complexity of the erf-function (constant time)?

Sebastian

like image 506
Euphoriewelle Avatar asked May 17 '12 09:05

Euphoriewelle


1 Answers

The docs for Boost Math Toolkit has a long list of references, among which Abramowitz and Stegun. The erf-function interface contains a policy template parameter that can be used to control the numerical precision (and hence its run-time complexity).

#include <boost/math/special_functions/erf.hpp>
namespace boost{ namespace math{

template <class T>
calculated-result-type erf(T z);

template <class T, class Policy>
calculated-result-type erf(T z, const Policy&);

template <class T>
calculated-result-type erfc(T z);

template <class T, class Policy>
calculated-result-type erfc(T z, const Policy&);

}} // namespaces

UPDATE:

Below a verbatim copy of the section "Implementation" of the earlier provided reference to the erf-function:

Implementation

All versions of these functions first use the usual reflection formulas to make their arguments positive:

erf(-z) = 1 - erf(z);

erfc(-z) = 2 - erfc(z);  // preferred when -z < -0.5

erfc(-z) = 1 + erf(z);   // preferred when -0.5 <= -z < 0

The generic versions of these functions are implemented in terms of the incomplete gamma function.

When the significand (mantissa) size is recognised (currently for 53, 64 and 113-bit reals, plus single-precision 24-bit handled via promotion to double) then a series of rational approximations devised by JM are used.

For z <= 0.5 then a rational approximation to erf is used, based on the observation that erf is an odd function and therefore erf is calculated using:

erf(z) = z * (C + R(z*z));

where the rational approximation R(z*z) is optimised for absolute error: as long as its absolute error is small enough compared to the constant C, then any round-off error incurred during the computation of R(z*z) will effectively disappear from the result. As a result the error for erf and erfc in this region is very low: the last bit is incorrect in only a very small number of cases.

For z > 0.5 we observe that over a small interval [a, b) then:

erfc(z) * exp(z*z) * z ~ c

for some constant c.

Therefore for z > 0.5 we calculate erfc using:

erfc(z) = exp(-z*z) * (C + R(z - B)) / z;

Again R(z - B) is optimised for absolute error, and the constant C is the average of erfc(z) * exp(z*z) * z taken at the endpoints of the range. Once again, as long as the absolute error in R(z - B) is small compared to c then c + R(z - B) will be correctly rounded, and the error in the result will depend only on the accuracy of the exp function. In practice, in all but a very small number of cases, the error is confined to the last bit of the result. The constant B is chosen so that the left hand end of the range of the rational approximation is 0.

For large z over a range [a, +∞] the above approximation is modified to:

erfc(z) = exp(-z*z) * (C + R(1 / z)) / z;

The rational approximations are explained in excruciating detail. Tf you need more details, you can always look at the source code.

like image 112
TemplateRex Avatar answered Nov 01 '22 23:11

TemplateRex