Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Advanced square detection (with connected region)

if the squares has connected region in image, how can I detect them.

I have tested the method mentioned in OpenCV C++/Obj-C: Advanced square detection

It did not work well.

Any good ideas ?

squares that has Connected region

import cv2
import numpy as np

def angle_cos(p0, p1, p2):
    d1, d2 = (p0-p1).astype('float'), (p2-p1).astype('float')
    return abs( np.dot(d1, d2) / np.sqrt( np.dot(d1, d1)*np.dot(d2, d2) ) )

def find_squares(img):
    squares = []
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # cv2.imshow("gray", gray)

    gaussian = cv2.GaussianBlur(gray, (5, 5), 0)

    temp,bin = cv2.threshold(gaussian, 80, 255, cv2.THRESH_BINARY)
    # cv2.imshow("bin", bin)

    contours, hierarchy = cv2.findContours(bin, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)

    cv2.drawContours( gray, contours, -1, (0, 255, 0), 3 )

    #cv2.imshow('contours', gray)
    for cnt in contours:
        cnt_len = cv2.arcLength(cnt, True)
        cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True)
        if len(cnt) == 4 and cv2.contourArea(cnt) > 1000 and cv2.isContourConvex(cnt):
            cnt = cnt.reshape(-1, 2)
            max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)])
            if max_cos < 0.1:
                squares.append(cnt)
    return squares

if __name__ == '__main__':
    img = cv2.imread('123.bmp')

    #cv2.imshow("origin", img)

    squares = find_squares(img)  
    print "Find %d squres" % len(squares)
    cv2.drawContours( img, squares, -1, (0, 255, 0), 3 )
    cv2.imshow('squares', img)

    cv2.waitKey()

I use some method in the opencv example, but the result is not good.

like image 260
Yang Avatar asked Feb 21 '13 08:02

Yang


2 Answers

Applying a Watershed Transform based on the Distance Transform will separate the objects:

enter image description here

Handling objects at the border is always problematic, and often discarded, so that pink rectangle at top left not separated is not a problem at all.

Given a binary image, we can apply the Distance Transform (DT) and from it obtain markers for the Watershed. Ideally there would be a ready function for finding regional minima/maxima, but since it isn't there, we can make a decent guess on how we can threshold DT. Based on the markers we can segment using Watershed, and the problem is solved. Now you can worry about distinguishing components that are rectangles from those that are not.

import sys
import cv2
import numpy
import random
from scipy.ndimage import label

def segment_on_dt(img):
    dt = cv2.distanceTransform(img, 2, 3) # L2 norm, 3x3 mask
    dt = ((dt - dt.min()) / (dt.max() - dt.min()) * 255).astype(numpy.uint8)
    dt = cv2.threshold(dt, 100, 255, cv2.THRESH_BINARY)[1]
    lbl, ncc = label(dt)

    lbl[img == 0] = lbl.max() + 1
    lbl = lbl.astype(numpy.int32)
    cv2.watershed(cv2.cvtColor(img, cv2.COLOR_GRAY2BGR), lbl)
    lbl[lbl == -1] = 0
    return lbl


img = cv2.cvtColor(cv2.imread(sys.argv[1]), cv2.COLOR_BGR2GRAY)
img = cv2.threshold(img, 0, 255, cv2.THRESH_OTSU)[1]
img = 255 - img # White: objects; Black: background

ws_result = segment_on_dt(img)
# Colorize
height, width = ws_result.shape
ws_color = numpy.zeros((height, width, 3), dtype=numpy.uint8)
lbl, ncc = label(ws_result)
for l in xrange(1, ncc + 1):
    a, b = numpy.nonzero(lbl == l)
    if img[a[0], b[0]] == 0: # Do not color background.
        continue
    rgb = [random.randint(0, 255) for _ in xrange(3)]
    ws_color[lbl == l] = tuple(rgb)

cv2.imwrite(sys.argv[2], ws_color)

From the above image you can consider fitting ellipses in each component to determine rectangles. Then you can use some measurement to define whether the component is a rectangle or not. This approach has a greater chance to work for rectangles that are fully visible, and will likely produce bad results for partially visible ones. The following image shows the result of such approach considering that a component is a rectangle if the rectangle from the fitted ellipse is within 10% of component's area.

enter image description here

# Fit ellipse to determine the rectangles.
wsbin = numpy.zeros((height, width), dtype=numpy.uint8)
wsbin[cv2.cvtColor(ws_color, cv2.COLOR_BGR2GRAY) != 0] = 255

ws_bincolor = cv2.cvtColor(255 - wsbin, cv2.COLOR_GRAY2BGR)
lbl, ncc = label(wsbin)
for l in xrange(1, ncc + 1):
    yx = numpy.dstack(numpy.nonzero(lbl == l)).astype(numpy.int64)
    xy = numpy.roll(numpy.swapaxes(yx, 0, 1), 1, 2)
    if len(xy) < 100: # Too small.
        continue

    ellipse = cv2.fitEllipse(xy)
    center, axes, angle = ellipse
    rect_area = axes[0] * axes[1]
    if 0.9 < rect_area / float(len(xy)) < 1.1:
        rect = numpy.round(numpy.float64(
                cv2.cv.BoxPoints(ellipse))).astype(numpy.int64)
        color = [random.randint(60, 255) for _ in xrange(3)]
        cv2.drawContours(ws_bincolor, [rect], 0, color, 2)

cv2.imwrite(sys.argv[3], ws_bincolor)
like image 198
mmgp Avatar answered Oct 18 '22 01:10

mmgp


Solution 1:

Dilate your image to delete connected components. Find contours of detected components. Eliminate contours which are not rectangles by introducing some measure (ex. ratio perimeter / area).

This solution will not detect rectangles connected to borders.

Solution 2:

Dilate to delete connected components. Find contours. Approximate contours to reduce their points (for rectangle contour should be 4 points). Check if angle between contour lines is 90 degrees. Eliminate contours which have no 90 degrees.

This should solve problem with rectangles connected to borders.

like image 23
krzych Avatar answered Oct 18 '22 01:10

krzych