Add column to the data frame using $ operator To add a new column in the R data frame, use the $ operator. Assign vector to the new column, which ultimately adds a new column with five rows in the data frame.
1 Adding new columns. You can add new columns to a dataframe using the $ and assignment <- operators. To do this, just use the df$name notation and assign a new vector of data to it. As you can see, survey has a new column with the name sex with the values we specified earlier.
An alternate solution is to use cbind, and taking advantage of the fact that R will recylce values of a shorter vector.
For Example
x <- df2 # from above
cbind(x, NewColumn="Singleton")
# x y NewColumn
# 1 4 d Singleton
# 2 5 e Singleton
# 3 6 f Singleton
There is no need for the use of rep
. R does that for you.
Therfore, you could put cbind(filelist[[i]], ID[[i]])
in your for loop
or as @Sven pointed out, you can use the cleaner mapply
:
filelist <- mapply(cbind, filelist, "SampleID"=ID, SIMPLIFY=F)
This is a corrected version of your loop:
for( i in seq_along(filelist)){
filelist[[i]]$SampleID <- rep(ID[i],nrow(filelist[[i]]))
}
There were 3 problems:
)
was missing after the command in the body.[[
, not by [
. [
returns a list of length one. [[
returns the element only.length(filelist)
is just one value, so the loop runs for the last element of the list only. I replaced it with seq_along(filelist)
.A more efficient approach is to use mapply
for the task:
mapply(function(x, y) "[<-"(x, "SampleID", value = y) ,
filelist, ID, SIMPLIFY = FALSE)
The purrr
way, using map2
library(dplyr)
library(purrr)
map2(filelist, ID, ~cbind(.x, SampleID = .y))
#[[1]]
# x y SampleId
#1 1 a 1A
#2 2 b 1A
#3 3 c 1A
#[[2]]
# x y SampleId
#1 4 d IB
#2 5 e IB
#3 6 f IB
Or can also use
map2(filelist, ID, ~.x %>% mutate(SampleId = .y))
If you name the list, we can use imap
and add the new column based on it's name.
names(filelist) <- c("1A","IB")
imap(filelist, ~cbind(.x, SampleID = .y))
#OR
#imap(filelist, ~.x %>% mutate(SampleId = .y))
which is similar to using Map
Map(cbind, filelist, SampleID = names(filelist))
This one worked for me:
Create a new column for every dataframe in a list; fill the values of the new column based on existing column. (In your case IDs).
Example:
# Create dummy data
df1<-data.frame(a = c(1,2,3))
df2<-data.frame(a = c(5,6,7))
# Create a list
l<-list(df1, df2)
> l
[[1]]
a
1 1
2 2
3 3
[[2]]
a
1 5
2 6
3 7
# add new column 'b'
# create 'b' values based on column 'a'
l2<-lapply(l, function(x)
cbind(x, b = x$a*4))
Results in:
> l2
[[1]]
a b
1 1 4
2 2 8
3 3 12
[[2]]
a b
1 5 20
2 6 24
3 7 28
In your case something like:
filelist<-lapply(filelist, function(x)
cbind(x, b = x$SampleID))
A tricky way:
library(plyr)
names(filelist) <- ID
result <- ldply(filelist, data.frame)
data_lst <- list(
data_1 = data.frame(c1 = 1:3, c2 = 3:1),
data_2 = data.frame(c1 = 1:3, c2 = 3:1)
)
f <- function (data, name){
data$name <- name
data
}
Map(f, data_lst , names(data_lst))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With