Here is my code:
import numpy as np
n = np.array([1.1,2.3,3.4])
for x in range(20):
n = np.append(n, [np.nan])
How can I add nan
to my numpy
array 20 times without a loop, only using numpy
's tools?
Thanks
n = np.append(n, np.repeat(np.nan, 20))
[Edit]
Ok, it seems that use of np.repeat
is slower than use of np.zeros(20) + np.nan
like in Mr E’s answer:
In [1]: timeit np.zeros(10000) + np.nan
100000 loops, best of 3: 16.1 µs per loop
In [2]: timeit np.repeat(np.nan, 10000)
10000 loops, best of 3: 70.8 µs per loop
But np.append
is quicker:
In [3]: timeit np.append(n, n)
100000 loops, best of 3: 5.56 µs per loop
In [4]: timeit np.hstack((n, n))
100000 loops, best of 3: 7.87 µs per loop
So you can combine both approaches:
np.append(n, np.zeros(20) + np.nan)
This gives:
In [42]: timeit np.hstack((n, np.zeros(20) + np.nan))
100000 loops, best of 3: 13.2 µs per loop
In [43]: timeit np.append(n, np.repeat(np.nan, 20))
100000 loops, best of 3: 15.4 µs per loop
In [44]: timeit np.append(n, np.zeros(20) + np.nan)
100000 loops, best of 3: 10.5 µs per loop
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With