I have a data table:
library(data.table)
(f <- data.table(id1=c(1,2,3,1,2,3),
id2=as.factor(c("a","a","b","c","b","d")),
v=1:6,
key=c("id1","id2")))
id1 id2 v
1: 1 a 1
2: 1 c 4
3: 2 a 2
4: 2 b 5
5: 3 b 3
6: 3 d 6
> str(f)
Classes ‘data.table’ and 'data.frame': 6 obs. of 3 variables:
$ id1: num 1 1 2 2 3 3
$ id2: Factor w/ 4 levels "a","b","c","d": 1 3 1 2 2 4
$ v : int 1 4 2 5 3 6
- attr(*, "sorted")= chr "id1" "id2"
- attr(*, ".internal.selfref")=<externalptr>
How do I add the "missing" rows?
I.e., for each existing id1
I want all possible values of id2
to be present (with v=0
).
So, I need to add 6 rows (3 possible values of id1
* 4 possible values of id2
- 6 existing rows).
I'd get the unique values in id1
and id2
and do a join using data.table
's cross join function CJ
as follows:
# if you've already set the key:
ans <- f[CJ(id1, id2, unique=TRUE)][is.na(v), v := 0L][]
# or, if f is not keyed:
ans <- f[CJ(id1 = id1, id2 = id2, unique=TRUE), on=.(id1, id2)][is.na(v), v := 0L][]
ans
f[, {
tab = table(id2)
x = as.numeric(tab)
x[x != 0] = v
list(id2 = names(tab), v = x)
}, by = id1]
## id1 id2 v
## 1: 1 a 1
## 2: 1 b 0
## 3: 1 c 4
## 4: 1 d 0
## 5: 2 a 2
## 6: 2 b 5
## 7: 2 c 0
## 8: 2 d 0
## 9: 3 a 0
## 10: 3 b 3
## 11: 3 c 0
## 12: 3 d 6
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With