I created the following DataFrame:
purchase_1 = pd.Series({'Name': 'Chris',
'Item Purchased': 'Dog Food',
'Cost': 22.50})
purchase_2 = pd.Series({'Name': 'Kevyn',
'Item Purchased': 'Kitty Litter',
'Cost': 2.50})
purchase_3 = pd.Series({'Name': 'Vinod',
'Item Purchased': 'Bird Seed',
'Cost': 5.00})
df = pd.DataFrame([purchase_1, purchase_2, purchase_3], index=['Store 1', 'Store 1', 'Store 2'])
I then added the following column:
df['Location'] = df.index
df
How do I then add the following series to the my DataFrame? Thank you.
s = pd.Series({'Name':'Kevyn', 'Item Purchased': 'Kitty Food', 'Cost': 3.00, 'Location': 'Store 2'})
You can simply assign the values of your Series into the existing DataFrame to add a new column: series = pd. Series([40, 38, 32.5, 27, 30], index=[0, 1, 2, 3, 4])
Addition of Pandas series and otherThe add() function is used to add series and other, element-wise (binary operator add). Equivalent to series + other, but with support to substitute a fill_value for missing data in one of the inputs.
Use concat
+ to_frame
+ T
:
df = pd.concat([df, s.to_frame().T])
print (df)
Cost Item Purchased Location Name
Store 1 22.5 Dog Food Store 1 Chris
Store 1 2.5 Kitty Litter Store 1 Kevyn
Store 2 5 Bird Seed Store 2 Vinod
0 3 Kitty Food Store 2 Kevyn
Also for default index is possible add parameter ignore_index=True
:
df = pd.concat([df, s.to_frame().T], ignore_index=True)
print (df)
Cost Item Purchased Location Name
0 22.5 Dog Food Store 1 Chris
1 2.5 Kitty Litter Store 1 Kevyn
2 5 Bird Seed Store 2 Vinod
3 3 Kitty Food Store 2 Kevyn
Or add some new index value which is not in original df
with loc
:
df.loc[0] = s
print (df)
Cost Item Purchased Name Location
Store 1 22.5 Dog Food Chris Store 1
Store 1 2.5 Kitty Litter Kevyn Store 1
Store 2 5.0 Bird Seed Vinod Store 2
0 3.0 Kitty Food Kevyn Store 2
because else values are overwritten by Series
:
df.loc['Store 2'] = s
print (df)
Cost Item Purchased Name Location
Store 1 22.5 Dog Food Chris Store 1
Store 1 2.5 Kitty Litter Kevyn Store 1
Store 2 3.0 Kitty Food Kevyn Store 2 <- overwritten row
I hope it will be helpful and give you the accurate result,
purchase_4 = pd.Series({'Name': 'Kevyn',
'Item Purchased': 'Kitty Food',
'Cost': 3.00,
'Location': 'Store 2'})
df2 = df.append(purchase_4, ignore_index=True)
df2.set_index(['Location', 'Name'])
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With