I have two string columns in my Pandas dataset
name1 name2
John Doe John Doe
AleX T Franz K
and I need to check whether name1
equals name2
.
The naive way I use now is using a simple mask
mask=df.name1==df.name2
But the problem is that there may be mislabeled strings (in a way that is not predictable - the data is too big) that prevent an exact matching to occur.
For instance "John Doe" and "John Doe " would not match. Of course, I trimmed, lower-cased my strings but other possibilities remain.
One idea would be to look whether name1
is contained in name2
. But it seems I cannot use str.contains
with another variable as argument. Any other ideas?
Many thanks!
EDIT: using isin
gives non-sensical results.
Example
test = pd.DataFrame({'A': ["john doe", " john doe", 'John'], 'B': [' john doe', 'eddie murphy', 'batman']})
test
Out[6]:
A B
0 john doe john doe
1 john doe eddie murphy
2 John batman
test['A'].isin(test['B'])
Out[7]:
0 False
1 True
2 False
Name: A, dtype: bool
I think you can use str.lower
and str.replace
with arbitrary whitespace s/+
:
test = pd.DataFrame({'A': ["john doe", " john doe", 'John'],
'B': [' john doe', 'eddie murphy', 'batman']})
print test['A'].str.lower().str.replace('s/+',"") ==
test['B'].str.strip().str.replace('s/+',"")
0 True
1 False
2 False
dtype: bool
strip
the spaces and lower
the case:
In [414]:
test['A'].str.strip().str.lower() == test['B'].str.strip().str.lower()
Out[414]:
0 True
1 False
2 False
dtype: bool
You can use difflib to compute distance
import difflib as dfl
dfl.SequenceMatcher(None,'John Doe', 'John doe').ratio()
edit : integration with Pandas :
import pandas as pd
import difflib as dfl
df = pd.DataFrame({'A': ["john doe", " john doe", 'John'], 'B': [' john doe', 'eddie murphy', 'batman']})
df['VAR1'] = df.apply(lambda x : dfl.SequenceMatcher(None, x['A'], x['B']).ratio(),axis=1)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With