I am working on an application with Visual Studio 2015 on Windows 7. The application has a C# frontend, a C++ CLR wrapper and C++ native code.
My application crashes with an access violation while initializing a static variable at function scope with C++ native code. But only on Windows Server 2003 Enterprise SP2 and not on Windows 7 or Windows Server 2012. I know Windows Server 2003 is out of support, but I have to target that platform for a few additional months and Visual Studio 2015 provides a platform toolset to target it.
I created a small reproducible example which you find at the end.
The crash only happens with all three parts involved (C#, C++ CLR, C++). If I remove any, the crash is gone.
The crash only happens with a custom constructor defined. If I remove the constructor, the crash is gone.
I am no assembly expert, but for me it looks like the crash is caused by the code which checks if the static initialization is required. The constructor is not even called.
My question is: Why does it crash on Windows Server 2003? Am I missing some important project setting?
Unhandled exception at 0x1000167E (Native.dll) in Managed.exe.dmp: 0xC0000005: Access violation reading location 0x00000000.
// Target framework: .NET Framework 4
// Platform target: x86
using System;
namespace Managed
{
class Program
{
static void Main(string[] args)
{
Console.Write("Press enter to start test...");
Console.ReadLine();
Native.Wrapper wrapper = new Native.Wrapper();
Console.WriteLine("Test was successful");
Console.Write("Press enter to exit...");
Console.ReadLine();
}
}
}
#pragma once
namespace Native
{
public ref class Wrapper
{
public:
Wrapper();
}; // public ref class Wrapper
} // namespace Native
// Platform Toolset: Visual Studio 2015 - Windows XP (v140_xp)
// Common Language Runtime Support: Common Language Runtime Support (/clr)
// .NET Target Framework Version: v4.0
// Warning Level: Level4
// Treat Warnings As Errors: Yes (/WX)
// Precompiled Header: Not Using Precompiled Headers
// SubSystem: Console (/SUBSYSTEM:CONSOLE)
// Optimization: Disabled (/Od)
#pragma once
#include "Wrapper.hpp"
#include "Caller.hpp"
namespace Native
{
Wrapper::Wrapper()
{
Caller* caller = new Caller();
delete caller;
}
} // namespace Native
#pragma once
namespace Native
{
class Caller
{
public:
Caller();
}; // class Caller
} // namespace Native
// Platform Toolset: Visual Studio 2015 - Windows XP (v140_xp)
// Common Language Runtime Support: No Common Language RunTime Support
// Warning Level: Level4
// Treat Warnings As Errors: Yes (/WX)
// Precompiled Header: Not Using Precompiled Headers
// SubSystem: Console (/SUBSYSTEM:CONSOLE)
// Optimization: Disabled (/Od)
#include "Caller.hpp"
#include "Singleton.hpp"
namespace Native
{
Caller::Caller()
{
Singleton::GetInstance()->DoSomething();
}
} // namespace Native
#pragma once
#include <iostream>
namespace Native
{
class Singleton
{
public:
Singleton() // !!! remove constructor to prevent crash !!!
{ }
static Singleton* GetInstance()
{
static Singleton Instance; // !!! crashes here !!!
return &Instance;
}
void DoSomething()
{
std::wcout << L"Doing something...\n";
}
}; // class Singleton
} // namespace Native
static Singleton* GetInstance()
{
10001650 push ebp
10001651 mov ebp,esp
10001653 push 0FFFFFFFFh
10001655 push 10006A8Ch
1000165A mov eax,dword ptr fs:[00000000h]
10001660 push eax
10001661 mov eax,dword ptr ds:[1001B334h]
10001666 xor eax,ebp
10001668 push eax
10001669 lea eax,[ebp-0Ch]
1000166C mov dword ptr fs:[00000000h],eax
static Singleton Instance;
10001672 mov eax,dword ptr ds:[1001B5D0h]
10001677 mov ecx,dword ptr fs:[2Ch]
1000167E mov edx,dword ptr [ecx+eax*4] // !!! access violation here !!!
10001681 mov eax,dword ptr ds:[1001B5A4h]
10001686 cmp eax,dword ptr [edx+4]
1000168C jle Native::Singleton::GetInstance+79h (100016C9h)
EAX = 00000000 EBX = 00000000 ECX = 00000000 EDX = 006A0003 ESI = 001647C8
EDI = 0012F3BC EIP = 1000167E ESP = 0012F394 EBP = 0012F3A4 EFL = 00010282
While debugging locally where the crash does not happen, a few more symbols are visible with the assembly:
static Singleton* GetInstance()
{
0FBD1650 push ebp
0FBD1651 mov ebp,esp
0FBD1653 push 0FFFFFFFFh
0FBD1655 push offset __ehhandler$?GetInstance@Singleton@Native@@SAPAV12@XZ (0FBD86BCh)
0FBD165A mov eax,dword ptr fs:[00000000h]
0FBD1660 push eax
0FBD1661 mov eax,dword ptr [___security_cookie (0FBF03CCh)]
0FBD1666 xor eax,ebp
0FBD1668 push eax
0FBD1669 lea eax,[ebp-0Ch]
0FBD166C mov dword ptr fs:[00000000h],eax
static Singleton Instance;
0FBD1672 mov eax,dword ptr [__tls_index (0FBF0668h)]
0FBD1677 mov ecx,dword ptr fs:[2Ch]
0FBD167E mov edx,dword ptr [ecx+eax*4]
0FBD1681 mov eax,dword ptr [TSS0<`template-parameter-2',Native::Singleton::tInstance,Native::Singleton * * const volatile,void,int, ?? &> (0FBF063Ch)]
0FBD1686 cmp eax,dword ptr [edx+4]
0FBD168C jle Native::Singleton::GetInstance+79h (0FBD16C9h)
The symbol __tls_index
seems to belong to some thread local store (guessed from the name). This matches with Magic statics which uses thread local store as a performance optimization in the reference implementation. When crashing, the thread local store returns 0
.
Could this be a bug with the runtime environment on Windows Server 2003 which manages and initializes the thread local store?
Reported as bug through Microsoft Connect: Bug report
This is the answer of Microsoft as posted to my bug report at Microsoft Connect:
Windows Server 2003 and Windows XP have problems with dynamically loading a DLL (via LoadLibrary) that uses thread-local storage, which is what thread-safe statics use internally to provide efficient execution when the static local has already been initialized. As these systems are out of support, it is extremely unlikely for a patch to be created for those systems to add this support as is present in Vista and newer OSes, and we are reluctant to penalize the performance on in-support OSes to provide this functionality to the old out-of-support ones.
To work around the issue you can use /Zc:threadSafeInit- to disable the thread-safe initialization code and this will avoid the thread-local variable. Of course by doing so the initialization code reverts back to the VS2013 mode and is not thread-safe, so this option is only viable if you don't rely on the thread-safety of local statics.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With