I'm trying to run a test Spark script in order to connect Spark to hadoop. The script is the following
from pyspark import SparkContext
sc = SparkContext("local", "Simple App")
file = sc.textFile("hdfs://hadoop_node.place:9000/errs.txt")
errors = file.filter(lambda line: "ERROR" in line)
errors.count()
When I run it with pyspark I get
py4j.protocol.Py4JJavaError: An error occurred while calling o21.collect. : java.io.IOException: Can't get Master Kerberos principal for use as renewer at org.apache.hadoop.mapreduce.security.TokenCache.obtainTokensForNamenodesInternal(TokenCache.java:116) at org.apache.hadoop.mapreduce.security.TokenCache.obtainTokensForNamenodesInternal(TokenCache.java:100) at org.apache.hadoop.mapreduce.security.TokenCache.obtainTokensForNamenodes(TokenCache.java:80) at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:187) at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:251) at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:140) at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:207) at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:205) at scala.Option.getOrElse(Option.scala:120) at org.apache.spark.rdd.RDD.partitions(RDD.scala:205) at org.apache.spark.rdd.MappedRDD.getPartitions(MappedRDD.scala:28) at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:207) at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:205) at scala.Option.getOrElse(Option.scala:120) at org.apache.spark.rdd.RDD.partitions(RDD.scala:205) at org.apache.spark.api.python.PythonRDD.getPartitions(PythonRDD.scala:46) at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:207) at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:205) at scala.Option.getOrElse(Option.scala:120) at org.apache.spark.rdd.RDD.partitions(RDD.scala:205) at org.apache.spark.SparkContext.runJob(SparkContext.scala:898) at org.apache.spark.rdd.RDD.collect(RDD.scala:608) at org.apache.spark.api.java.JavaRDDLike$class.collect(JavaRDDLike.scala:243) at org.apache.spark.api.java.JavaRDD.collect(JavaRDD.scala:27) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:606) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:379) at py4j.Gateway.invoke(Gateway.java:259) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:207) at java.lang.Thread.run(Thread.java:744)
This happens despite the facts that
The core-site.xml in the spark/conf and hadoop/conf folders is the following (got it from one of the hadoop nodes)
<configuration>
<property>
<name>hadoop.security.auth_to_local</name>
<value>
RULE:[1:$1](.*@place)s/@place//
RULE:[2:$1/$2@$0](.*/node1.place@place)s/^([a-zA-Z]*).*/$1/
RULE:[2:$1/$2@$0](.*/node2.place@place)s/^([a-zA-Z]*).*/$1/
RULE:[2:$1/$2@$0](.*/node3.place@place)s/^([a-zA-Z]*).*/$1/
RULE:[2:$1/$2@$0](.*/node4.place@place)s/^([a-zA-Z]*).*/$1/
RULE:[2:$1/$2@$0](.*/node5.place@place)s/^([a-zA-Z]*).*/$1/
RULE:[2:$1/$2@$0](.*/node6.place@place)s/^([a-zA-Z]*).*/$1/
RULE:[2:$1/$2@$0](.*/node7.place@place)s/^([a-zA-Z]*).*/$1/
RULE:[2:nobody]
DEFAULT
</value>
</property>
<property>
<name>net.topology.node.switch.mapping.impl</name>
<value>org.apache.hadoop.net.TableMapping</value>
</property>
<property>
<name>net.topology.table.file.name</name>
<value>/etc/hadoop/conf/topology.table.file</value>
</property>
<property>
<name>fs.defaultFS</name>
<value>hdfs://server.place:9000/</value>
</property>
<property>
<name>hadoop.security.authentication</name>
<value>kerberos</value>
</property>
<property>
<name>hadoop.security.authorization</name>
<value>true</value>
</property>
<property>
<name>hadoop.proxyuser.hive.hosts</name>
<value>*</value>
</property>
<property>
<name>hadoop.proxyuser.hive.groups</name>
<value>*</value>
</property>
</configuration>
Can someone point out what am I missing?
After creating my own hadoop cluster in order to better understand how hadoop works. I fixed it.
You have to provide Spark with a valid .keytab file which has been generated for an account which has at least read access to the hadoop cluster.
Also, you have to provide spark with the hdfs-site.xml of your hdfs cluster.
So for my case I had to create a keytab file which when you run
klist -k -e -t
on it you get entries like the following
host/[email protected]
In my case the host was the literal word host and not a variable. Also in your hdfs-site.xml you have to provide the path of the keytab file and say that
host/[email protected]
will be your account.
Cloudera has a pretty detailed writeup on how to do it.
Edit after playing a little bit with different configurations I think the following should be noted. You have to provide spark with the exact hdfs-site.xml and core-site.xml of your hadoop cluster. Otherwise it wont work
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With