I am trying to fill a dataframe with zeros, however I do not want to touch leading NaNs:
rng = pd.date_range('2016-06-01', periods=9, freq='D')
df = pd.DataFrame({'data': pd.Series([np.nan]*3 + [20, 30, 40] + [np.nan]*3, rng)})
2016-06-01     NaN
2016-06-02     NaN
2016-06-03     NaN
2016-06-04    20.0
2016-06-05    30.0
2016-06-06    40.0
2016-06-07     NaN
2016-06-08     NaN
2016-06-09     NaN
The df I want after filling/replacing is this:
pd.DataFrame({'data': pd.Series([np.nan]*3 + [20, 30, 40] + [0.]*3, rng)})
2016-06-01     NaN
2016-06-02     NaN
2016-06-03     NaN
2016-06-04    20.0
2016-06-05    30.0
2016-06-06    40.0
2016-06-07     0.0
2016-06-08     0.0
2016-06-09     0.0
Since fillna() only allows value or method and fillna(0) replaces all NaNs, including leading, I was hoping replace could jump in here, but
df.replace([np.nan], 0, method='ffill')
also replaces all NaNs.
How can I zero fill values only after the first non-NaN value, also with multiple data columns?
you can do it using last_valid_index() function:
In [80]: df
Out[80]:
            data  data1  data2
2016-06-01   NaN    NaN    NaN
2016-06-02   NaN    NaN   10.0
2016-06-03   NaN   20.0   20.0
2016-06-04  20.0   30.0   20.0
2016-06-05   NaN   40.0    NaN
2016-06-06  40.0   30.0   40.0
2016-06-07   NaN    NaN    NaN
2016-06-08   NaN    NaN    NaN
2016-06-09   NaN    NaN    NaN
In [81]: %paste
first_valid_idx = df.apply(lambda x: x.first_valid_index()).to_frame()
df = df.fillna(0)
for ix, r in first_valid_idx.iterrows():
    df.loc[df.index < r[0], ix] = np.nan
## -- End pasted text --
In [82]: df
Out[82]:
            data  data1  data2
2016-06-01   NaN    NaN    NaN
2016-06-02   NaN    NaN   10.0
2016-06-03   NaN   20.0   20.0
2016-06-04  20.0   30.0   20.0
2016-06-05   0.0   40.0    0.0
2016-06-06  40.0   30.0   40.0
2016-06-07   0.0    0.0    0.0
2016-06-08   0.0    0.0    0.0
2016-06-09   0.0    0.0    0.0
In [83]: first_valid_idx
Out[83]:
               0
data  2016-06-04
data1 2016-06-03
data2 2016-06-02
OLD answer:
In [38]: df.loc[df.index > df.data.last_valid_index(), 'data'] = 0
In [39]: df
Out[39]:
            data
2016-06-01   NaN
2016-06-02   NaN
2016-06-03   NaN
2016-06-04  20.0
2016-06-05  30.0
2016-06-06  40.0
2016-06-07   0.0
2016-06-08   0.0
2016-06-09   0.0
                        I think you can find first group of NaN by isnull with cumsum and then fillna all other values:
print (df.data.notnull().cumsum())
2016-06-01    0
2016-06-02    0
2016-06-03    0
2016-06-04    1
2016-06-05    2
2016-06-06    3
2016-06-07    3
2016-06-08    3
2016-06-09    3
Freq: D, Name: data, dtype: int32
print (df.data.mask(df.data.notnull().cumsum() != 0, df.data.fillna(0)))
2016-06-01     NaN
2016-06-02     NaN
2016-06-03     NaN
2016-06-04    20.0
2016-06-05    30.0
2016-06-06    40.0
2016-06-07     0.0
2016-06-08     0.0
2016-06-09     0.0
Freq: D, Name: data, dtype: float64
EDIT:
With multiple columns it works nice too:
df = pd.DataFrame({'data': pd.Series([np.nan]*3 + [20, 30, 40] + [np.nan]*3, rng), 
                   'data1': pd.Series([np.nan]*2 + [20, 30, 40,30] + [np.nan]*3, rng),
                   'data2': pd.Series([np.nan]*1 + [10,20, 20, 30, 40] + [np.nan]*3, rng)})
print (df.mask(df.notnull().cumsum() != 0, df.fillna(0)))
            data  data1  data2
2016-06-01   NaN    NaN    NaN
2016-06-02   NaN    NaN   10.0
2016-06-03   NaN   20.0   20.0
2016-06-04  20.0   30.0   20.0
2016-06-05  30.0   40.0   30.0
2016-06-06  40.0   30.0   40.0
2016-06-07   0.0    0.0    0.0
2016-06-08   0.0    0.0    0.0
2016-06-09   0.0    0.0    0.0
EDIT2 by DSM comment - nicer is use cummax:
print (df.mask(df.notnull().cummax(), df.fillna(0)))
            data  data1  data2
2016-06-01   NaN    NaN    NaN
2016-06-02   NaN    NaN   10.0
2016-06-03   NaN   20.0   20.0
2016-06-04  20.0   30.0   20.0
2016-06-05  30.0   40.0   30.0
2016-06-06  40.0   30.0   40.0
2016-06-07   0.0    0.0    0.0
2016-06-08   0.0    0.0    0.0
2016-06-09   0.0    0.0    0.0
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With