This question is very similar to: Quadratic bezier curve: Y coordinate for a given X?. But this one is cubic...
I'm using the getBezier function to calculate the Y coordinates of a bezier curve. The bezier curve starts always at (0,0) and ends always at (1,1).
I know the X value, so I tried to insert it as percent (I'm a moron). But that didn't work, obviously. Could you provide a solution? It's necessary it's an idiot proof function. Like:
function yFromX (c2x,c2y,c3x,c3y) { //c1 = (0,0) and c4 = (1,1), domainc2 and domainc3 = [0,1]
//your magic
return y;
}
Since the problem is so limited (function x(t) is monotonic), we can probably get away with using a pretty cheap method of solution-- binary search.
var bezier = function(x0, y0, x1, y1, x2, y2, x3, y3, t) {
/* whatever you're using to calculate points on the curve */
return undefined; //I'll assume this returns array [x, y].
};
//we actually need a target x value to go with the middle control
//points, don't we? ;)
var yFromX = function(xTarget, x1, y1, x2, y2) {
var xTolerance = 0.0001; //adjust as you please
var myBezier = function(t) {
return bezier(0, 0, x1, y1, x2, y2, 1, 1, t);
};
//we could do something less stupid, but since the x is monotonic
//increasing given the problem constraints, we'll do a binary search.
//establish bounds
var lower = 0;
var upper = 1;
var percent = (upper + lower) / 2;
//get initial x
var x = myBezier(percent)[0];
//loop until completion
while(Math.abs(xTarget - x) > xTolerance) {
if(xTarget > x)
lower = percent;
else
upper = percent;
percent = (upper + lower) / 2;
x = myBezier(percent)[0];
}
//we're within tolerance of the desired x value.
//return the y value.
return myBezier(percent)[1];
};
This should certainly break on some inputs outside of your constraints.
I used the algorithm from this page and wrote it down in JavaScript. It works for all the cases I have tested so far. (And doesn't use a while
loop.)
Call the solveCubicBezier function. Pass in the x values of all the control points and the x value you want to get the y coordinate from. For example:
var results = solveCubicBezier(p0.x, p1.x, p2.x, p3.x, myX);
results
is an array containing the 't' values originally passed into the Bezier function. The array can contain 0 to 3 elements, because not all x values have a corresponding y value, and some even have multiple.
function solveQuadraticEquation(a, b, c) {
var discriminant = b * b - 4 * a * c;
if (discriminant < 0) {
return [];
} else {
return [
(-b + Math.sqrt(discriminant)) / (2 * a),
(-b - Math.sqrt(discriminant)) / (2 * a)
];
}
}
function solveCubicEquation(a, b, c, d) {
if (!a) return solveQuadraticEquation(b, c, d);
b /= a;
c /= a;
d /= a;
var p = (3 * c - b * b) / 3;
var q = (2 * b * b * b - 9 * b * c + 27 * d) / 27;
if (p === 0) {
return [ Math.pow(-q, 1 / 3) ];
} else if (q === 0) {
return [Math.sqrt(-p), -Math.sqrt(-p)];
} else {
var discriminant = Math.pow(q / 2, 2) + Math.pow(p / 3, 3);
if (discriminant === 0) {
return [Math.pow(q / 2, 1 / 3) - b / 3];
} else if (discriminant > 0) {
return [Math.pow(-(q / 2) + Math.sqrt(discriminant), 1 / 3) - Math.pow((q / 2) + Math.sqrt(discriminant), 1 / 3) - b / 3];
} else {
var r = Math.sqrt( Math.pow(-(p/3), 3) );
var phi = Math.acos(-(q / (2 * Math.sqrt(Math.pow(-(p / 3), 3)))));
var s = 2 * Math.pow(r, 1/3);
return [
s * Math.cos(phi / 3) - b / 3,
s * Math.cos((phi + 2 * Math.PI) / 3) - b / 3,
s * Math.cos((phi + 4 * Math.PI) / 3) - b / 3
];
}
}
}
function roundToDecimal(num, dec) {
return Math.round(num * Math.pow(10, dec)) / Math.pow(10, dec);
}
function solveCubicBezier(p0, p1, p2, p3, x) {
p0 -= x;
p1 -= x;
p2 -= x;
p3 -= x;
var a = p3 - 3 * p2 + 3 * p1 - p0;
var b = 3 * p2 - 6 * p1 + 3 * p0;
var c = 3 * p1 - 3 * p0;
var d = p0;
var roots = solveCubicEquation(
p3 - 3 * p2 + 3 * p1 - p0,
3 * p2 - 6 * p1 + 3 * p0,
3 * p1 - 3 * p0,
p0
);
var result = [];
var root;
for (var i = 0; i < roots.length; i++) {
root = roundToDecimal(roots[i], 15);
if (root >= 0 && root <= 1) result.push(root);
}
return result;
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With