With a numpy ndarray it is possible to write to multiple columns at a time without making a copy first (as long as they are adjacent). If I wanted to write to the first three columns of an array I would write
a[0,0:3] = 1,2,3 # this is very fast ('a' is a numpy ndarray)
I was hoping that in pandas I would similarly be able to select multiple adjacent columns by "label-slicing" like so (assuming the first 3 columns are labeled 'a','b','c')
a.loc[0,'a':'c'] = 1,2,3 # this works but is very slow ('a' is a pandas DataFrame)
or similarly
a.iloc[0,3:6] = 1,2,3 # this is equally as slow
However, this takes several 100s of milliseconds as compared to writing to a numpy array which takes only a few microseconds. I'm unclear on whether pandas is making a copy of the array under the hood. The only way I could find to write to the dataframe in this way that gives good speed is to work on the underlying ndarray directly
a.values[0,0:3] = 1,2,3 # this works fine and is fast
Have I missed something in the Pandas docs or is their no way to do multiple adjacent column indexing on a Pandas dataframe with speed comparable to numpy?
Edit
Here's the actual dataframe I am working with.
>> conn = sqlite3.connect('prath.sqlite')
>> prath = pd.read_sql("select image_id,pixel_index,skin,r,g,b from pixels",conn)
>> prath.shape
(5913307, 6)
>> prath.head()
image_id pixel_index skin r g b
0 21 113764 0 0 0 0
1 13 187789 0 183 149 173
2 17 535758 0 147 32 35
3 31 6255 0 116 1 16
4 15 119272 0 238 229 224
>> prath.dtypes
image_id int64
pixel_index int64
skin int64
r int64
g int64
b int64
dtype: object
Here is some runtime comparisons for the different indexing methods (again, pandas indexing is very slow)
>> %timeit prath.loc[0,'r':'b'] = 4,5,6
1 loops, best of 3: 888 ms per loop
>> %timeit prath.iloc[0,3:6] = 4,5,6
1 loops, best of 3: 894 ms per loop
>> %timeit prath.values[0,3:6] = 4,5,6
100000 loops, best of 3: 4.8 µs per loop
Edit to clarify: I don't believe pandas has a direct analog to setting a view in numpy in terms of both speed and syntax. iloc
and loc
are probably the most direct analog in terms of syntax and purpose, but are much slower. This is a fairly common situation with numpy and pandas. Pandas does a lot more than numpy (labeled columns/indexes, automatic alignment, etc.), but is slower to varying degrees. When you need speed and can do things in numpy, then do them in numpy.
I think in a nutshell that the tradeoff here is that loc
and iloc
will be slower but work 100% of the time whereas values
will be fast but not always work (to be honest, I didn't even realize it would work in the way you got it to work).
But here's a really simple example where values
doesn't work because column 'g' is a float rather than integer.
prath['g'] = 3.33
prath.values[0,3:6] = 4,5,6
prath.head(3)
image_id pixel_index skin r g b
0 21 113764 0 0 3.33 0
1 13 187789 0 183 3.33 173
2 17 535758 0 147 3.33 35
prath.iloc[0,3:6] = 4,5,6
prath.head(3)
image_id pixel_index skin r g b
0 21 113764 0 4 5.00 6
1 13 187789 0 183 3.33 173
2 17 535758 0 147 3.33 35
You can often get numpy-like speed and behavior from pandas when columns are of homogeneous type, you want to be careful about this. Edit to add: As @toes notes in the comment, the documentation does state that you can do this with homogeneous data. However, it's potentially very error prone as the example above shows, and I don't think many people would consider this a good general practice in pandas.
My general recommendation would be to do things in numpy in cases where you need the speed (and have homogeneous data types), and pandas when you don't. The nice thing is that numpy and pandas play well together so it's really not that hard to convert between dataframes and arrays as you go.
Edit to add: The following seems to work (albeit with a warning) even with column 'g' as a float. The speed is in between the values
way and loc/iloc
ways. I'm not sure if this can be expected to work all the time though. Just putting it out as a possible middle way.
prath[0:1][['r','g','b']] = 4,5,6
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With