I am trying write Google PubSub messages to Google Cloud Storage using Google Cloud Dataflow. I know that TextIO/AvroIO do not support streaming pipelines. However, I read in [1] that it is possible to write to GCS in a streaming pipeline from a ParDo/DoFn
in a comment by the author. I constructed a pipeline by following their article as closely as I could.
I was aiming for this behaviour:
dataflow-requests/[isodate-time]/[paneIndex]
.I get different results:
How do I fix these problems and get the behaviour I'm expecting?
Sample log output:
21:30:06.977 writing pane 0 to blob dataflow-requests/2016-04-08T20:59:59.999Z/0
21:30:06.977 writing pane 0 to blob dataflow-requests/2016-04-08T20:59:59.999Z/0
21:30:07.773 sucessfully write pane 0 to blob dataflow-requests/2016-04-08T20:59:59.999Z/0
21:30:07.846 sucessfully write pane 0 to blob dataflow-requests/2016-04-08T20:59:59.999Z/0
21:30:07.847 writing pane 0 to blob dataflow-requests/2016-04-08T20:59:59.999Z/0
Here is my code:
package com.example.dataflow;
import com.google.cloud.dataflow.sdk.Pipeline;
import com.google.cloud.dataflow.sdk.io.PubsubIO;
import com.google.cloud.dataflow.sdk.options.DataflowPipelineOptions;
import com.google.cloud.dataflow.sdk.options.PipelineOptions;
import com.google.cloud.dataflow.sdk.options.PipelineOptionsFactory;
import com.google.cloud.dataflow.sdk.transforms.DoFn;
import com.google.cloud.dataflow.sdk.transforms.ParDo;
import com.google.cloud.dataflow.sdk.transforms.windowing.*;
import com.google.cloud.dataflow.sdk.values.PCollection;
import com.google.gcloud.storage.BlobId;
import com.google.gcloud.storage.BlobInfo;
import com.google.gcloud.storage.Storage;
import com.google.gcloud.storage.StorageOptions;
import org.joda.time.Duration;
import org.joda.time.format.ISODateTimeFormat;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.io.IOException;
public class PubSubGcsSSCCEPipepline {
private static final Logger LOG = LoggerFactory.getLogger(PubSubGcsSSCCEPipepline.class);
public static final String BUCKET_PATH = "dataflow-requests";
public static final String BUCKET_NAME = "myBucketName";
public static final Duration ONE_DAY = Duration.standardDays(1);
public static final Duration ONE_HOUR = Duration.standardHours(1);
public static final Duration TEN_SECONDS = Duration.standardSeconds(10);
public static final int MAX_EVENTS_IN_FILE = 100;
public static final String PUBSUB_SUBSCRIPTION = "projects/myProjectId/subscriptions/requests-dataflow";
private static class DoGCSWrite extends DoFn<String, Void>
implements DoFn.RequiresWindowAccess {
public transient Storage storage;
{ init(); }
public void init() { storage = StorageOptions.defaultInstance().service(); }
private void readObject(java.io.ObjectInputStream in)
throws IOException, ClassNotFoundException {
init();
}
@Override
public void processElement(ProcessContext c) throws Exception {
String isoDate = ISODateTimeFormat.dateTime().print(c.window().maxTimestamp());
String blobName = String.format("%s/%s/%s", BUCKET_PATH, isoDate, c.pane().getIndex());
BlobId blobId = BlobId.of(BUCKET_NAME, blobName);
LOG.info("writing pane {} to blob {}", c.pane().getIndex(), blobName);
storage.create(BlobInfo.builder(blobId).contentType("text/plain").build(), c.element().getBytes());
LOG.info("sucessfully write pane {} to blob {}", c.pane().getIndex(), blobName);
}
}
public static void main(String[] args) {
PipelineOptions options = PipelineOptionsFactory.fromArgs(args).withValidation().create();
options.as(DataflowPipelineOptions.class).setStreaming(true);
Pipeline p = Pipeline.create(options);
PubsubIO.Read.Bound<String> readFromPubsub = PubsubIO.Read.named("ReadFromPubsub")
.subscription(PUBSUB_SUBSCRIPTION);
PCollection<String> streamData = p.apply(readFromPubsub);
PCollection<String> windows = streamData.apply(Window.<String>into(FixedWindows.of(ONE_HOUR))
.withAllowedLateness(ONE_DAY)
.triggering(AfterWatermark.pastEndOfWindow()
.withEarlyFirings(AfterPane.elementCountAtLeast(MAX_EVENTS_IN_FILE))
.withLateFirings(AfterFirst.of(AfterPane.elementCountAtLeast(MAX_EVENTS_IN_FILE),
AfterProcessingTime.pastFirstElementInPane()
.plusDelayOf(TEN_SECONDS))))
.discardingFiredPanes());
windows.apply(ParDo.of(new DoGCSWrite()));
p.run();
}
}
[1] https://labs.spotify.com/2016/03/10/spotifys-event-delivery-the-road-to-the-cloud-part-iii/
Thanks to Sam McVeety for the solution. Here is the corrected code for anyone reading:
package com.example.dataflow;
import com.google.cloud.dataflow.sdk.Pipeline;
import com.google.cloud.dataflow.sdk.io.PubsubIO;
import com.google.cloud.dataflow.sdk.options.DataflowPipelineOptions;
import com.google.cloud.dataflow.sdk.options.PipelineOptions;
import com.google.cloud.dataflow.sdk.options.PipelineOptionsFactory;
import com.google.cloud.dataflow.sdk.transforms.*;
import com.google.cloud.dataflow.sdk.transforms.windowing.*;
import com.google.cloud.dataflow.sdk.values.KV;
import com.google.cloud.dataflow.sdk.values.PCollection;
import com.google.gcloud.WriteChannel;
import com.google.gcloud.storage.BlobId;
import com.google.gcloud.storage.BlobInfo;
import com.google.gcloud.storage.Storage;
import com.google.gcloud.storage.StorageOptions;
import org.joda.time.Duration;
import org.joda.time.format.ISODateTimeFormat;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.util.Iterator;
public class PubSubGcsSSCCEPipepline {
private static final Logger LOG = LoggerFactory.getLogger(PubSubGcsSSCCEPipepline.class);
public static final String BUCKET_PATH = "dataflow-requests";
public static final String BUCKET_NAME = "myBucketName";
public static final Duration ONE_DAY = Duration.standardDays(1);
public static final Duration ONE_HOUR = Duration.standardHours(1);
public static final Duration TEN_SECONDS = Duration.standardSeconds(10);
public static final int MAX_EVENTS_IN_FILE = 100;
public static final String PUBSUB_SUBSCRIPTION = "projects/myProjectId/subscriptions/requests-dataflow";
private static class DoGCSWrite extends DoFn<Iterable<String>, Void>
implements DoFn.RequiresWindowAccess {
public transient Storage storage;
{ init(); }
public void init() { storage = StorageOptions.defaultInstance().service(); }
private void readObject(java.io.ObjectInputStream in)
throws IOException, ClassNotFoundException {
init();
}
@Override
public void processElement(ProcessContext c) throws Exception {
String isoDate = ISODateTimeFormat.dateTime().print(c.window().maxTimestamp());
long paneIndex = c.pane().getIndex();
String blobName = String.format("%s/%s/%s", BUCKET_PATH, isoDate, paneIndex);
BlobId blobId = BlobId.of(BUCKET_NAME, blobName);
LOG.info("writing pane {} to blob {}", paneIndex, blobName);
WriteChannel writer = storage.writer(BlobInfo.builder(blobId).contentType("text/plain").build());
LOG.info("blob stream opened for pane {} to blob {} ", paneIndex, blobName);
int i=0;
for (Iterator<String> it = c.element().iterator(); it.hasNext();) {
i++;
writer.write(ByteBuffer.wrap(it.next().getBytes()));
LOG.info("wrote {} elements to blob {}", i, blobName);
}
writer.close();
LOG.info("sucessfully write pane {} to blob {}", paneIndex, blobName);
}
}
public static void main(String[] args) {
PipelineOptions options = PipelineOptionsFactory.fromArgs(args).withValidation().create();
options.as(DataflowPipelineOptions.class).setStreaming(true);
Pipeline p = Pipeline.create(options);
PubsubIO.Read.Bound<String> readFromPubsub = PubsubIO.Read.named("ReadFromPubsub")
.subscription(PUBSUB_SUBSCRIPTION);
PCollection<String> streamData = p.apply(readFromPubsub);
PCollection<KV<String, String>> keyedStream =
streamData.apply(WithKeys.of(new SerializableFunction<String, String>() {
public String apply(String s) { return "constant"; } }));
PCollection<KV<String, Iterable<String>>> keyedWindows = keyedStream
.apply(Window.<KV<String, String>>into(FixedWindows.of(ONE_HOUR))
.withAllowedLateness(ONE_DAY)
.triggering(AfterWatermark.pastEndOfWindow()
.withEarlyFirings(AfterPane.elementCountAtLeast(MAX_EVENTS_IN_FILE))
.withLateFirings(AfterFirst.of(AfterPane.elementCountAtLeast(MAX_EVENTS_IN_FILE),
AfterProcessingTime.pastFirstElementInPane()
.plusDelayOf(TEN_SECONDS))))
.discardingFiredPanes())
.apply(GroupByKey.create());
PCollection<Iterable<String>> windows = keyedWindows
.apply(Values.<Iterable<String>>create());
windows.apply(ParDo.of(new DoGCSWrite()));
p.run();
}
}
The Pub/Sub Subscription to BigQuery template is a streaming pipeline that reads JSON-formatted messages from a Pub/Sub subscription and writes them to a BigQuery table. You can use the template as a quick solution to move Pub/Sub data to BigQuery.
Run the pipeline Run a streaming pipeline using the Google-provided Pub/Sub Topic to BigQuery template. The pipeline gets incoming data from the Pub/Sub topic and outputs the data to your BigQuery dataset. In the Google Cloud console, go to the Dataflow Jobs page. Click Create job from template.
There's a gotcha here, which is that you'll need a GroupByKey
in order for the panes to be aggregated appropriate. The Spotify example references this as "Materialization of panes is done in “Aggregate Events” transform which is nothing else than a GroupByKey transform", but it's a subtle point. You'll need to provide a key in order to do this, and in your case, it appears a constant value will work.
PCollection<String> streamData = p.apply(readFromPubsub);
PCollection<KV<String, String>> keyedStream =
streamData.apply(WithKeys.of(new SerializableFunction<String, String>() {
public Integer apply(String s) { return "constant"; } }));
At this point, you can apply your windowing function, and then a final GroupByKey
to get the desired behavior:
PCollection<String, Iterable<String>> keyedWindows = keyedStream.apply(...)
.apply(GroupByKey.create());
PCollection<Iterable<String>> windows = keyedWindows
.apply(Values.<Iterable<String>>create());
Now the elements in processElement
will be Iterable<String>
, with size 100 or more.
We've filed https://issues.apache.org/jira/browse/BEAM-184 to make this behavior clearer.
As of Beam 2.0, TextIO
/AvroIO
do support writing unbounded collections - see documentation, in particular, you have to specify withWindowedWrites()
.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With