I am trying to write new Eigen expression following latest documentation https://eigen.tuxfamily.org/dox-devel/TopicNewExpressionType.html. Basically, what I want is part of reshape functionality that is still absent in Eigen. So chop_expr(Eigen vector expression here) should reshape input vector to n times matrix.
Unfortunately, what I implemented doesn't work with expressions allocated on heap, for example code below doesn't work, but after changing MAXV to 10, everything goes perfect.
Another question is about
enum {Flags = EvalBeforeNestingBit}
I found that I need it otherwise, when I chop matrix multiplication, Eigen doesn't create temporaries, but I guess that this way I force chop_expr to create temporary for any other expressions also. So the question is how should I do it properly?
namespace Eigen {
template <int chunk, typename Derived> struct ChoppedExpression;
namespace internal {
template <int chunk, typename Derived>
struct traits<ChoppedExpression<chunk, Derived>> : traits<Derived> {
enum {Flags = EvalBeforeNestingBit};
enum {IsRowMajor = 0};
enum { RowsAtCompileTime = chunk};
enum {MaxRowsAtCompileTime = chunk};
enum {ColsAtCompileTime = (Derived::RowsAtCompileTime == Eigen::Dynamic
? Eigen::Dynamic : Derived::RowsAtCompileTime / chunk)};
enum {MaxColsAtCompileTime = (Derived::MaxRowsAtCompileTime == Eigen::Dynamic
? Eigen::Dynamic : (Derived::MaxRowsAtCompileTime + chunk - 1) / chunk)};
};
} // namespace internal
template <int chunk, class Derived> struct ChoppedExpression
: public MatrixBase<ChoppedExpression<chunk, Derived>> {
ChoppedExpression(const Derived& arg) : m_arg(arg) {
EIGEN_STATIC_ASSERT(Derived::ColsAtCompileTime == 1,
YOU_TRIED_CALLING_A_VECTOR_METHOD_ON_A_MATRIX);
EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime % chunk == 0
|| Derived::RowsAtCompileTime == Eigen::Dynamic,
VECTOR_SHOULD_HAVE_INTEGER_NUMBER_OF_CHUNKS_FOR_CHOPPING);
}
typedef Index Index;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rows() const { return chunk; }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index cols() const { return m_arg.size() / chunk; }
typedef typename internal::ref_selector<ChoppedExpression>::type Nested;
typedef typename internal::ref_selector<Derived>::type DerivedTypeNested;
DerivedTypeNested m_arg;
};
namespace internal {
template<int chunk, typename Derived>
struct evaluator<ChoppedExpression<chunk, Derived>>
: public evaluator_base<ChoppedExpression<chunk, Derived>> {
typedef ChoppedExpression<chunk, Derived> XprType;
typedef typename nested_eval<Derived, XprType::ColsAtCompileTime>::type DerivedNested;
typedef typename remove_all<DerivedNested>::type DerivedNestedCleaned;
typedef typename XprType::CoeffReturnType CoeffReturnType;
enum {
CoeffReadCost = evaluator<DerivedNestedCleaned>::CoeffReadCost,
Flags = traits<XprType>::Flags, IsRowMajor = 0
};
evaluator(const XprType& xpr) : m_argImpl(xpr.m_arg) {}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const
{ return m_argImpl.coeff(col * chunk + row); }
evaluator<DerivedNestedCleaned> m_argImpl;
};
} // namespace internal
} // namespace Eigen
template<int chunk, typename Derived> EIGEN_ALWAYS_INLINE
EIGEN_DEVICE_FUNC static Eigen::ChoppedExpression<chunk, Derived>
chop_expr(const Eigen::MatrixBase<Derived> &expr)
{ return Eigen::ChoppedExpression<chunk, Derived>(expr.derived()); }
#define MAXV -1
Eigen::Matrix<double, -1, 1, 0, std::max(3*MAXV, -1)> _blendshapes(2, 1);
int main() {
for (int i = 0; i < 2; ++i) _blendshapes[i] = double(i + 10);
std::cout << chop_expr<2>(_blendshapes + Eigen::Matrix<double, 2, 1>(1, 1)) << std::endl;
}
Update
Finally, I found the way to make it work. The solution is to remove DerivedNested and DerivedNestedCleaned typedefs (I obviously don't need them in my expression as it is just reshaping, but, I can't explain why it causes incorrect results). Thus the only question left is what should I do about EvalBeforeNestingBit?
You do not need the EvalBeforeNestingBit
, but you must be careful when propagating the flags in the evaluator. To be safe, write:
Flags = traits<XprType>::Flags&HereditaryBits
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With