Are there any libraries or headers available to make writing c++ vectors or boost::multi_arrays to HDF5 datasets easy?
I have looked at the HDF5 C++ examples and they just use c++ syntax to call c functions, and they only write static c arrays to their datasets (see create.cpp).
Am I missing the point!?
Many thanks in advance, Adam
Here is how to write N dimension multi_array
s in HDF5 format
Here is a short example:
#include <boost/multi_array.hpp>
using boost::multi_array;
using boost::extents;
// allocate array
int NX = 5, NY = 6, NZ = 7;
multi_array<double, 3> float_data(extents[NX][NY][NZ]);
// initialise the array
for (int ii = 0; ii != NX; ii++)
for (int jj = 0; jj != NY; jj++)
for (int kk = 0; kk != NZ; kk++)
float_data[ii][jj][kk] = ii + jj + kk;
//
// write to HDF5 format
//
H5::H5File file("SDS.h5", H5F_ACC_TRUNC);
write_hdf5(file, "doubleArray", float_data );
Here is code for write_hdf5()
.
First, we must map c++ types to HDF5 types (from the H5
c++ api). I have commented out lines which lead to duplicate definitions because some of the <stdint.h>
types (e.g. uint8_t
) are aliases of standard types (e.g. unsigned char
)
#include <cstdint>
//!_______________________________________________________________________________________
//!
//! map types to HDF5 types
//!
//!
//! \author lg (04 March 2013)
//!_______________________________________________________________________________________
template<typename T> struct get_hdf5_data_type
{ static H5::PredType type()
{
//static_assert(false, "Unknown HDF5 data type");
return H5::PredType::NATIVE_DOUBLE;
}
};
template<> struct get_hdf5_data_type<char> { H5::IntType type { H5::PredType::NATIVE_CHAR }; };
//template<> struct get_hdf5_data_type<unsigned char> { H5::IntType type { H5::PredType::NATIVE_UCHAR }; };
//template<> struct get_hdf5_data_type<short> { H5::IntType type { H5::PredType::NATIVE_SHORT }; };
//template<> struct get_hdf5_data_type<unsigned short> { H5::IntType type { H5::PredType::NATIVE_USHORT }; };
//template<> struct get_hdf5_data_type<int> { H5::IntType type { H5::PredType::NATIVE_INT }; };
//template<> struct get_hdf5_data_type<unsigned int> { H5::IntType type { H5::PredType::NATIVE_UINT }; };
//template<> struct get_hdf5_data_type<long> { H5::IntType type { H5::PredType::NATIVE_LONG }; };
//template<> struct get_hdf5_data_type<unsigned long> { H5::IntType type { H5::PredType::NATIVE_ULONG }; };
template<> struct get_hdf5_data_type<long long> { H5::IntType type { H5::PredType::NATIVE_LLONG }; };
template<> struct get_hdf5_data_type<unsigned long long> { H5::IntType type { H5::PredType::NATIVE_ULLONG }; };
template<> struct get_hdf5_data_type<int8_t> { H5::IntType type { H5::PredType::NATIVE_INT8 }; };
template<> struct get_hdf5_data_type<uint8_t> { H5::IntType type { H5::PredType::NATIVE_UINT8 }; };
template<> struct get_hdf5_data_type<int16_t> { H5::IntType type { H5::PredType::NATIVE_INT16 }; };
template<> struct get_hdf5_data_type<uint16_t> { H5::IntType type { H5::PredType::NATIVE_UINT16 }; };
template<> struct get_hdf5_data_type<int32_t> { H5::IntType type { H5::PredType::NATIVE_INT32 }; };
template<> struct get_hdf5_data_type<uint32_t> { H5::IntType type { H5::PredType::NATIVE_UINT32 }; };
template<> struct get_hdf5_data_type<int64_t> { H5::IntType type { H5::PredType::NATIVE_INT64 }; };
template<> struct get_hdf5_data_type<uint64_t> { H5::IntType type { H5::PredType::NATIVE_UINT64 }; };
template<> struct get_hdf5_data_type<float> { H5::FloatType type { H5::PredType::NATIVE_FLOAT }; };
template<> struct get_hdf5_data_type<double> { H5::FloatType type { H5::PredType::NATIVE_DOUBLE }; };
template<> struct get_hdf5_data_type<long double> { H5::FloatType type { H5::PredType::NATIVE_LDOUBLE }; };
Then we can use a bit of template forwarding magic to make a function of the right type to output our data. Since this is template code, it needs to live in a header file if you are going to output HDF5 arrays from multiple source files in your programme:
//!_______________________________________________________________________________________
//!
//! write_hdf5 multi_array
//!
//! \author leo Goodstadt (04 March 2013)
//!
//!_______________________________________________________________________________________
template<typename T, std::size_t DIMENSIONS, typename hdf5_data_type>
void do_write_hdf5(H5::H5File file, const std::string& data_set_name, const boost::multi_array<T, DIMENSIONS>& data, hdf5_data_type& datatype)
{
// Little endian for x86
//FloatType datatype(get_hdf5_data_type<T>::type());
datatype.setOrder(H5T_ORDER_LE);
vector<hsize_t> dimensions(data.shape(), data.shape() + DIMENSIONS);
H5::DataSpace dataspace(DIMENSIONS, dimensions.data());
H5::DataSet dataset = file.createDataSet(data_set_name, datatype, dataspace);
dataset.write(data.data(), datatype);
}
template<typename T, std::size_t DIMENSIONS>
void write_hdf5(H5::H5File file, const std::string& data_set_name, const boost::multi_array<T, DIMENSIONS>& data )
{
get_hdf5_data_type<T> hdf_data_type;
do_write_hdf5(file, data_set_name, data, hdf_data_type.type);
}
I am unaware of any. The HDF5 C++ wrappers are not that great, particularly because they don't allow combination with parallel HDF5. So, I wrote my own wrappers in about 2 hours and it works just fine. Ultimately, you'll just have to call it directly (or indirectly if you choose to make C++ bindings).
Fortunately, both the vectors and multi_arrays are contiguous in storage, so you can just pass the data from them directly into HDF5 function calls.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With