I would like to wrap a number of class methods in Python with the same wrapper.
Conceptually it would look something like this in the simplest scenario:
x = 0 # some arbitrary context
class Base(object):
def a(self):
print "a x: %s" % x
def b(self):
print "b x: %s" % x
class MixinWithX(Base):
"""Wrap"""
def a(self):
global x
x = 1
super(MixinWithX, self).a()
x = 0
def b(self):
global x
x = 1
super(MixinWithX, self).a()
x = 0
Of course, when there are more methods than a
and b
, this becomes a mess. It seems like there ought to be something simpler. Obviously x
could be modified in a decorator but one still ends up having a long list of garbage, which instead of the above looks like:
from functools import wraps
def withx(f):
@wraps(f) # good practice
def wrapped(*args, **kwargs):
global x
x = 1
f(*args, **kwargs)
x = 0
return wrapped
class MixinWithX(Base):
"""Wrap"""
@withx
def a(self):
super(MixinWithX, self).a()
@withx
def b(self):
super(MixinWithX, self).b()
I thought about using __getattr__
in the mixin, but of course since methods such as a
and b
are already defined this is never called.
I also thought about using __getattribute__
but it returns the attribute, not wrapping the call. I suppose __getattribute__
could return a closure (example below) but I am not sure how sound a design that is. Here is an example:
class MixinWithX(Base):
# a list of the methods of our parent class (Base) that are wrapped
wrapped = ['a', 'b']
# application of the wrapper around the methods specified
def __getattribute__(self, name):
original = object.__getattribute__(self, name)
if name in wrapped:
def wrapped(self, *args, **kwargs):
global x
x = 1 # in this example, a context manager would be handy.
ret = original(*args, **kwargs)
x = 0
return ret
return wrapped
return original
It has occurred to me that there may be something built into Python that may alleviate the need to manually reproduce every method of the parent class that is to be wrapped. Or maybe a closure in __getattribute__
is the proper way to do this. I would be grateful for thoughts.
What are Wrappers in Python? So, wrappers are the functionality available in Python to wrap a function with another function to extend its behavior. Now, the reason to use wrappers in our code lies in the fact that we can modify a wrapped function without actually changing it. They are also known as decorators.
In the decorator body, wrapper class modifies the class C maintaining the originality or without changing C. cls(x) return an object of class C (with its name attribute initialized with the value of x). The method get_name return the name attribute for the wrap object. And finally in the output “Geeks” gets printed.
To call a class method, put the class as the first argument. Class methods can be can be called from instances and from the class itself. All of these use the same method. The method can use the classes variables and methods.
To decorate a method in a class, first use the '@' symbol followed by the name of the decorator function. A decorator is simply a function that takes a function as an argument and returns yet another function.
Here's my attempt, which allows for a more terse syntax...
x = 0 # some arbitrary context
# Define a simple function to return a wrapped class
def wrap_class(base, towrap):
class ClassWrapper(base):
def __getattribute__(self, name):
original = base.__getattribute__(self, name)
if name in towrap:
def func_wrapper(*args, **kwargs):
global x
x = 1
try:
return original(*args, **kwargs)
finally:
x = 0
return func_wrapper
return original
return ClassWrapper
# Our existing base class
class Base(object):
def a(self):
print "a x: %s" % x
def b(self):
print "b x: %s" % x
# Create a wrapped class in one line, without needing to define a new class
# for each class you want to wrap.
Wrapped = wrap_class(Base, ('a',))
# Now use it
m = Wrapped()
m.a()
m.b()
# ...or do it in one line...
m = wrap_class(Base, ('a',))()
...which outputs...
a x: 1
b x: 0
You can do this using decorators and inspect:
from functools import wraps
import inspect
def withx(f):
@wraps(f)
def wrapped(*args, **kwargs):
print "decorator"
x = 1
f(*args, **kwargs)
x = 0
return wrapped
class MyDecoratingBaseClass(object):
def __init__(self, *args, **kwargs):
for member in inspect.getmembers(self, predicate=inspect.ismethod):
if member[0] in self.wrapped_methods:
setattr(self, member[0], withx(member[1]))
class MyDecoratedSubClass(MyDecoratingBaseClass):
wrapped_methods = ['a', 'b']
def a(self):
print 'a'
def b(self):
print 'b'
def c(self):
print 'c'
if __name__ == '__main__':
my_instance = MyDecoratedSubClass()
my_instance.a()
my_instance.b()
my_instance.c()
Output:
decorator
a
decorator
b
c
There are two general directions I can think of which are useful in your case.
One is using a class decorator. Write a function which takes a class, and returns a class with the same set of methods, decorated (either by creating a new class by calling type(...)
, or by changing the input class in place).
EDIT: (the actual wrapping/inspecting code I had in mind is similar to what @girasquid has in his answer, but connecting is done using decoration instead of mixin/inheritance, which I think is more flexible an robust.)
Which brings me to the second option, which is to use a metaclass, which may be cleaner (yet trickier if you're not used to working with metaclasses). If you don't have access to the definition of the original class, or don't want to change the original definition, you can subclass the original class, setting the metaclass on the derived.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With