Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Would this method work to scale out SQL queries?

I have a database containing a single huge table. At the moment a query can take anything from 10 to 20 minutes and I need that to go down to 10 seconds. I have spent months trying different products like GridSQL. GridSQL works fine, but is using its own parser which does not have all the needed features. I have also optimized my database in various ways without getting the speedup I need.

I have a theory on how one could scale out queries, meaning that I utilize several nodes to run a single query in parallel. A precondition is that the data is partitioned (vertically), one partition placed on each node. The idea is to take an incoming SQL query and simply run it exactly like it is on all the nodes. When the results are returned to a coordinator node, the same query is run on the union of the resultsets. I realize that an aggregate function like average need to be rewritten into a count and sum to the nodes and that the coordinator divides the sum of the sums with the sum of the counts to get the average.

What kinds of problems could not easily be solved using this model. I believe one issue would be the count distinct function.

Edit: I am getting so many nice suggestions, but none have addressed the method.

like image 371
David Avatar asked Dec 01 '22 10:12

David


1 Answers

It's a data volume problem, not necessarily an architecture problem.

Whether on 1 machine or 1000 machines, if you end up summarizing 1,000,000 rows, you're going to have problems.

Rather than normalizing you data, you need to de-normalize it.

You mention in a comment that your data base is "perfect for your purpose", when, obviously, it's not. It's too slow.

So, something has to give. Your perfect model isn't working, as you need to process too much data in too short of a time. Sounds like you need some higher level data sets than your raw data. Perhaps a data warehousing solution. Who knows, not enough information to really say.

But there are a lot of things you can do to satisfy a specific subset of queries with a good response time, while still allowing ad hoc queries that respond in "10-20 minutes".

Edit regarding comment:

I am not familiar with "GridSQL", or what it does.

If you send several, identical SQL queries to individual "shard" databases, each containing a subset, then the simple selection query will scale to the network (i.e. you will eventually become network bound to the controller), as this is a truly, parallel, stateless process.

The problem becomes, as you mentioned, the secondary processing, notably sorting and aggregates, as this can only be done on the final, "raw" result set.

That means that your controller ends up, inevitably, becoming your bottleneck and, in the end, regardless of how "scaled out" you are, you still have to contend with a data volume issue. If you send your query out to 1000 node and inevitably have to summarize or sort the 1000 row result set from each node, resulting in 1M rows, you still have a long result time and large data processing demand on a single machine.

I don't know what database you are using, and I don't know the specifics about individual databases, but you can see how if you actually partition your data across several disk spindles, and have a decent, modern, multi-core processor, the database implementation itself can handle much of this scaling in terms of parallel disk spindle requests for you. Which implementations actually DO do this, I can't say. I'm just suggesting that it's possible for them to (and some may well do this).

But, my general point, is if you are running, specifically, aggregates, then you are likely processing too much data if you're hitting the raw sources each time. If you analyze your queries, you may well be able to "pre-summarize" your data at various levels of granularity to help avoid the data saturation problem.

For example, if you are storing individual web hits, but are more interested in activity based on each hour of the day (rather than the subsecond data you may be logging), summarizing to the hour of the day alone can reduce your data demand dramatically.

So, scaling out can certainly help, but it may well not be the only solution to the problem, rather it would be a component. Data warehousing is designed to address these kinds of problems, but does not work well with "ad hoc" queries. Rather you need to have a reasonable idea of what kinds of queries you want to support and design it accordingly.

like image 75
Will Hartung Avatar answered Dec 04 '22 08:12

Will Hartung