Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Wordcloud is cropping text

I am using twitter API to generate sentiments. I am trying to generate a word-cloud based on tweets.

Here is my code to generate a wordcloud

wordcloud(clean.tweets, random.order=F,max.words=80, col=rainbow(50), scale=c(3.5,1))

Result for this:

enter image description here

I also tried this:

pal <- brewer.pal(8,"Dark2")

wordcloud(clean.tweets,min.freq = 125,max.words = Inf,random.order  = TRUE,colors = pal)

Result for this:

enter image description here

Am I missing something?

This is how I am getting and cleaning tweets:

#downloading tweets
tweets <- searchTwitter("#hanshtag",n = 5000, lang = "en",resultType = "recent")
# removing re tweets 
no_retweets <- strip_retweets(tweets , strip_manual = TRUE)

#converts to data frame
df <- do.call("rbind", lapply(no_retweets , as.data.frame))

#remove odd characters
df$text <- sapply(df$text,function(row) iconv(row, "latin1", "ASCII", sub="")) #remove emoticon
df$text = gsub("(f|ht)tp(s?)://(.*)[.][a-z]+", "", df$text) #remove URL
sample <- df$text


    # Cleaning Tweets 
    sum_txt1 <- gsub("(RT|via)((?:\\b\\w*@\\w+)+)","",sample)
    sum_txt2 <- gsub("http[^[:blank:]]+","",sum_txt1)
    sum_tx3 <- gsub("@\\w+","",sum_txt2)
    sum_tx4 <- gsub("[[:punct:]]"," ", sum_tx3)
    sum_tex5 <- gsub("[^[:alnum:]]", " ", sum_tx4)
    sum_tx6 <- gsub("RT  ","", sum_tex5)

    # WordCloud

    # data frame is not good for text convert it corpus
    corpus <- Corpus(VectorSource(sum_tx6))
    clean.tweets<- tm_map(corpus , content_transformer(tolower)) #converting everything to lower cases
    clean.tweets<- tm_map(guj_clean,removeWords, stopwords("english")) #stopword are words like of, the, a, as..
    clean.tweets<- tm_map(guj_clean, removeNumbers)
    clean.tweets<- tm_map(guj_clean, stripWhitespace)

Thanks in advance!

like image 371
Harsh Shah Avatar asked Nov 28 '17 05:11

Harsh Shah


1 Answers

Try changing the scale on your wordcloud from c(3.5,1) to c(3.5,0.25).

wordcloud(clean.tweets, random.order=F,max.words=80, col=rainbow(50), scale=c(3.5,0.25))
like image 125
spazznolo Avatar answered Sep 20 '22 08:09

spazznolo