I am currently thinking of reasons why multi threaded applications may not scale well.
Two reasons I am aware of and that I have been fighting with are:
What else are problems?
For point 1), they are not necessarily 'not done well', but in most cases there are critical sections that processes/threads have to wait for each other, e.g. update some critical data. This is described well by Amdahl's law.
Another point I'd like to add is the scalability of the task itself. If the task (the input) is not scalable, then increasing processing power (cores/threads) cannot improve the whole throughput. For example, an application is to handle data flows, but there is a constraint that data packets from same flow can not be handled in parallel (due to ordering consideration), then the scalability will be limited by the number of flows.
In addition, the scalability of the algorithm is even more fundamental, considering the difference between O(1) and O(n) algorithms. Of course, maybe the topic here focus on scalability of processing power, rather than data size.
I think that, in (1), you've nailed one of most important factors that can negatively influence the performance of multithreaded apps. Esp. Google for 'false sharing'.
(2), however only affects a set of multithreaded apps - those that that run CPU-bound threads in parallel. If an app uses many threads that are I/O bound, (2) does not matter too much.
Looking at my box here, it has 100 processes and 1403 threads, CPU use 3%. Only 7 out of the 100 processes are single-threaded. Most of the apps, therefore, are multithreaded but I/O waiting.
My box would work reasonably well, at the moment, if it had only one core. Sure, hitting a link that winds up my browser would probably be a bit slower to bring up a complex page, but not much.
In the commonest case then, where apps are multithreaded to take avantage of the high I/O performance of preemptive multitaskers, apps scale very well indeed, even on a single-core CPU.
Try not to fall into the trap of thinking that preemptive multitasking OS are all about 'doing CPU-bound tasks in parallel' - they actually make this difficult by forcing the need for locking, synchro, signalling etc. It's much more about high-performance I/O, something that a cooperative scheduler is spectacularly bad at.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With