I've been learning a little about parallelism in the last few days, and I came across this example.
I put it side to side with a sequential for loop like this:
private static void NoParallelTest()
{
int[] nums = Enumerable.Range(0, 1000000).ToArray();
long total = 0;
var watch = Stopwatch.StartNew();
for (int i = 0; i < nums.Length; i++)
{
total += nums[i];
}
Console.WriteLine("NoParallel");
Console.WriteLine(watch.ElapsedMilliseconds);
Console.WriteLine("The total is {0}", total);
}
I was surprised to see that the NoParallel method finished way way faster than the parallel example given at the site.
I have an i5 PC.
I really thought that the Parallel method would finish faster.
Is there a reasonable explanation for this? Maybe I misunderstood something?
The sequential version was faster because the time spent doing operations on each iteration in your example is very small and there is a fairly significant overhead involved with creating and managing multiple threads.
Parallel programming only increases efficiency when each iteration is sufficiently expensive in terms of processor time.
I think that's because the loop performs a very simple, very fast operation.
In the case of the non-parallel version that's all it does. But the parallel version has to invoke a delegate. Invoking a delegate is quite fast and usually you don't have to worry how often you do that. But in this extreme case, it's what makes the difference. I can easily imagine that invoking a delegate will be, say, ten times slower (or more, I have no idea what the exact ratio is) than adding a number from an array.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With