Based on that answer here are two versions of merge function used for mergesort. Could you help me to understand why the second one is much faster. I have tested it for list of 50000 and the second one is 8 times faster (Gist).
def merge1(left, right):
i = j = inv = 0
merged = []
while i < len(left) and j < len(right):
if left[i] <= right[j]:
merged.append(left[i])
i += 1
else:
merged.append(right[j])
j += 1
inv += len(left[i:])
merged += left[i:]
merged += right[j:]
return merged, inv
.
def merge2(array1, array2):
inv = 0
merged_array = []
while array1 or array2:
if not array1:
merged_array.append(array2.pop())
elif (not array2) or array1[-1] > array2[-1]:
merged_array.append(array1.pop())
inv += len(array2)
else:
merged_array.append(array2.pop())
merged_array.reverse()
return merged_array, inv
Here is the sort function:
def _merge_sort(list, merge):
len_list = len(list)
if len_list < 2:
return list, 0
middle = len_list / 2
left, left_inv = _merge_sort(list[:middle], merge)
right, right_inv = _merge_sort(list[middle:], merge)
l, merge_inv = merge(left, right)
inv = left_inv + right_inv + merge_inv
return l, inv
.
import numpy.random as nprnd
test_list = nprnd.randint(1000, size=50000).tolist()
test_list_tmp = list(test_list)
merge_sort(test_list_tmp, merge1)
test_list_tmp = list(test_list)
merge_sort(test_list_tmp, merge2)
Similar answer as kreativitea's above, but with more info (i think!)
So profiling the actual merge functions, for the merging of two 50K arrays,
311748 function calls in 15.363 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.001 0.001 15.363 15.363 <string>:1(<module>)
1 15.322 15.322 15.362 15.362 merge.py:3(merge1)
221309 0.030 0.000 0.030 0.000 {len}
90436 0.010 0.000 0.010 0.000 {method 'append' of 'list' objects}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
250004 function calls in 0.104 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.001 0.001 0.104 0.104 <string>:1(<module>)
1 0.074 0.074 0.103 0.103 merge.py:20(merge2)
50000 0.005 0.000 0.005 0.000 {len}
100000 0.010 0.000 0.010 0.000 {method 'append' of 'list' objects}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
100000 0.014 0.000 0.014 0.000 {method 'pop' of 'list' objects}
1 0.000 0.000 0.000 0.000 {method 'reverse' of 'list' objects}
So for merge1, it's 221309 len
, 90436 append
, and takes 15.363 seconds.
So for merge2, it's 50000 len
, 100000 append
, and 100000 pop
and takes 0.104 seconds.
len
and append
pop
are all O(1) (more info here), so these profiles aren't showing what's actually taking the time, since going of just that, it should be faster, but only ~20% so.
In the first method, there is this line:
inv += len(left[i:])
so every time that is called, it has to rebuild an array. If you comment out this line (or just replace it with inv += 1
or something) then it becomes faster than the other method. This is the single line responsible for the increased time.
Having noticed this is the cause, the issue can be fixed by improving the code; change it to this for a speed up. After doing this, it will be faster than merge2
inv += len(left) - i
def merge3(left, right):
i = j = inv = 0
merged = []
while i < len(left) and j < len(right):
if left[i] <= right[j]:
merged.append(left[i])
i += 1
else:
merged.append(right[j])
j += 1
inv += len(left) - i
merged += left[i:]
merged += right[j:]
return merged, inv
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With