Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Why simple Scala tailrec loop for fibonacci calculation is faster in 3x times than Java loop?

Scala

code:

@annotation.tailrec
private def fastLoop(n: Int, a: Long = 0, b: Long = 1): Long = 
  if (n > 1) fastLoop(n - 1, b, a + b) else b

bytecode:

  private long fastLoop(int, long, long);
    Code:
       0: iload_1
       1: iconst_1
       2: if_icmple     21
       5: iload_1
       6: iconst_1
       7: isub
       8: lload         4
      10: lload_2
      11: lload         4
      13: ladd
      14: lstore        4
      16: lstore_2
      17: istore_1
      18: goto          0
      21: lload         4
      23: lreturn

result is 53879289.462 ± 6289454.961 ops/s:

https://travis-ci.org/plokhotnyuk/scala-vs-java/jobs/56117116#L2909

Java

code:

private long fastLoop(int n, long a, long b) {
    while (n > 1) {
        long c = a + b;
        a = b;
        b = c;
        n--;
    }
    return b;
}

bytecode:

  private long fastLoop(int, long, long);
    Code:
       0: iload_1
       1: iconst_1
       2: if_icmple     24
       5: lload_2
       6: lload         4
       8: ladd
       9: lstore        6
      11: lload         4
      13: lstore_2
      14: lload         6
      16: lstore        4
      18: iinc          1, -1
      21: goto          0
      24: lload         4
      26: lreturn

result is 17444340.812 ± 9508030.117 ops/s:

https://travis-ci.org/plokhotnyuk/scala-vs-java/jobs/56117116#L2881

Yes, it depends on environment parameters (JDK version, CPU model & frequency of RAM) and dynamic state. But why mostly the same bytecode on the same environment can produce stable 2x-3x difference for range of function arguments?

Here is list of ops/s numbers for different values of function arguments from my notebook with Intel(R) Core(TM) i7-2640M CPU @ 2.80GHz (max 3.50GHz), RAM 12Gb DDR3-1333, Ubuntu 14.10, Oracle JDK 1.8.0_40-b25 64-bit:

[info] Benchmark            (n)   Mode  Cnt          Score          Error  Units
[info] JavaFibonacci.loop     2  thrpt    5  171776163.027 ±  4620419.353  ops/s
[info] JavaFibonacci.loop     4  thrpt    5  144793748.362 ± 25506649.671  ops/s
[info] JavaFibonacci.loop     8  thrpt    5   67271848.598 ± 15133193.309  ops/s
[info] JavaFibonacci.loop    16  thrpt    5   54552795.336 ± 17398924.190  ops/s
[info] JavaFibonacci.loop    32  thrpt    5   41156886.101 ± 12905023.289  ops/s
[info] JavaFibonacci.loop    64  thrpt    5   24407771.671 ±  4614357.030  ops/s
[info] ScalaFibonacci.loop    2  thrpt    5  148926292.076 ± 23673126.125  ops/s
[info] ScalaFibonacci.loop    4  thrpt    5  139184195.527 ± 30616384.925  ops/s
[info] ScalaFibonacci.loop    8  thrpt    5  109050091.514 ± 23506756.224  ops/s
[info] ScalaFibonacci.loop   16  thrpt    5   81290743.288 ±  5214733.740  ops/s
[info] ScalaFibonacci.loop   32  thrpt    5   38937420.431 ±  8324732.107  ops/s
[info] ScalaFibonacci.loop   64  thrpt    5   22641295.988 ±  5961435.507  ops/s

Additional question is "why values of ops/s are decreasing in non-linear way as above?"

like image 222
Andriy Plokhotnyuk Avatar asked Mar 27 '15 20:03

Andriy Plokhotnyuk


1 Answers

Yes, I was wrong, and missed that tested method was not just fastLoop calls:

Scala

  @Benchmark
  def loop(): BigInt =
    if (n > 92) loop(n - 91, 4660046610375530309L, 7540113804746346429L)
    else fastLoop(n)

Java

 @Benchmark
    public BigInteger loop() {
        return n > 92 ?
                loop(n - 91, BigInteger.valueOf(4660046610375530309L), BigInteger.valueOf(7540113804746346429L)) :
                BigInteger.valueOf(fastLoop(n, 0, 1));
    }

As Aleksey noted lot of time was spend in conversions from Long/long to BigInt/BigInteger.

I have wrote separate benchmarks which tests just fastLoop(n, 0, 1) call. Here are results from them:

[info] JavaFibonacci.fastLoop     2  thrpt    5  338071686.910 ± 66146042.535  ops/s
[info] JavaFibonacci.fastLoop     4  thrpt    5  231066635.073 ±  3702419.585  ops/s
[info] JavaFibonacci.fastLoop     8  thrpt    5  174832245.690 ± 36491363.939  ops/s
[info] JavaFibonacci.fastLoop    16  thrpt    5   95162799.968 ± 16151609.596  ops/s
[info] JavaFibonacci.fastLoop    32  thrpt    5   60197918.766 ± 10662747.434  ops/s
[info] JavaFibonacci.fastLoop    64  thrpt    5   29564087.602 ±  3610164.011  ops/s
[info] ScalaFibonacci.fastLoop    2  thrpt    5  336588218.560 ± 56762496.725  ops/s
[info] ScalaFibonacci.fastLoop    4  thrpt    5  224918874.670 ± 35499107.133  ops/s
[info] ScalaFibonacci.fastLoop    8  thrpt    5  121952667.394 ± 17314931.711  ops/s
[info] ScalaFibonacci.fastLoop   16  thrpt    5   96573968.960 ± 12757890.175  ops/s
[info] ScalaFibonacci.fastLoop   32  thrpt    5   59462408.940 ± 14924369.138  ops/s
[info] ScalaFibonacci.fastLoop   64  thrpt    5   28922994.377 ±  7209467.197  ops/s

Lessons that I learned:

  • Scala implicits can eat lot of performance, while are easy to be overlooked;

  • Cashing of BigInt values in Scala can speed up some functions comparing with Java's BigInteger.

like image 195
Andriy Plokhotnyuk Avatar answered Sep 28 '22 13:09

Andriy Plokhotnyuk