This is my test code for implementation of a simple testBM algorithm, no prefiltering. But it takes around 400 ms or even more when window size is bigger while the StereoBM of opencv (CPU not GPU) takes 20 ms. I have checked the source of StereoBM but it's difficult for me to understand it. Is there anyone who knows why?
And below is my code.
void testBM(const Mat &left0,
const Mat &right0,
Mat &disparity,
int SAD,
int searchRange)
{
int cols = left0.cols;
int rows = left0.rows;
int total = cols*rows;
const uchar* data_left = left0.ptr<uchar>(0);
const uchar* data_right = right0.ptr<uchar>(0);
uchar* data_dm = new uchar[total];
int dbNum = 2 * SAD + 1;
int dNum = dbNum * dbNum;
//x is col index in the dbNum * dbNum window
//y is row index in this window
//z is (x + y * cols).
//I compute them in advance for avoid computing repeatedly.
Point3i *dLocDif = new Point3i[dNum];
for (int i = 0; i < dNum; i++)
{
dLocDif[i] = Point3i(i%dbNum - SAD, i / dbNum - SAD, 0);
dLocDif[i].z = dLocDif[i].x + dLocDif[i].y * cols;
}
//I compute disparity difference for eache search range to avoid
//computing repeatedly.
uchar* dif_ = new uchar[total*searchRange];
for (int _search = 0; _search < searchRange; _search++)
{
int th = _search * total;
for (int i = 0; i < total; i++)
{
int c = i % cols - _search;
if (c < 0) continue;
dif_[i+th] = (uchar)std::abs(data_left[i] - data_right[i-_search]);
}
}
for (int p = 0; p < total; p++)
{
int min = 50 * dNum;
int dm = -256;
int _col = p % cols;
int _row = p / cols;
int th = 0;
//I search for the smallest difference between left and right image
// using def_.
for (int _search = 0; _search < searchRange; _search++, th += total)
{
if (_col + _search > cols) break;
int temp = 0;
for (int i = 0; i < dNum; i++)
{
int _c = _col + dLocDif[i].x;
if (_c >= cols || _c < 0) continue;
int _r = _row + dLocDif[i].y;
if (_r >= rows || _r < 0) continue;
temp += dif_[th + p + dLocDif[i].z];
if (temp > min)
{
break;
}
}
if (temp < min)
{
dm = _search;
min = temp;
}
}
data_dm[p] = dm;
}
disparity = Mat(rows, cols, CV_8UC1, data_dm);
}
Here is the essential source code of StereoBM in opencv. I am a little confused after the initialisation. Could anyone explain briefly?
static void
findStereoCorrespondenceBM( const Mat& left, const Mat& right,
Mat& disp, Mat& cost, const CvStereoBMState& state,
uchar* buf, int _dy0, int _dy1 )
{
const int ALIGN = 16;
int x, y, d;
int wsz = state.SADWindowSize, wsz2 = wsz/2;
int dy0 = MIN(_dy0, wsz2+1), dy1 = MIN(_dy1, wsz2+1);
int ndisp = state.numberOfDisparities;
int mindisp = state.minDisparity;
int lofs = MAX(ndisp - 1 + mindisp, 0);
int rofs = -MIN(ndisp - 1 + mindisp, 0);
int width = left.cols, height = left.rows;
int width1 = width - rofs - ndisp + 1;
int ftzero = state.preFilterCap;
int textureThreshold = state.textureThreshold;
int uniquenessRatio = state.uniquenessRatio;
short FILTERED = (short)((mindisp - 1) << DISPARITY_SHIFT);
int *sad, *hsad0, *hsad, *hsad_sub, *htext;
uchar *cbuf0, *cbuf;
const uchar* lptr0 = left.data + lofs;
const uchar* rptr0 = right.data + rofs;
const uchar *lptr, *lptr_sub, *rptr;
short* dptr = (short*)disp.data;
int sstep = (int)left.step;
int dstep = (int)(disp.step/sizeof(dptr[0]));
int cstep = (height+dy0+dy1)*ndisp;
int costbuf = 0;
int coststep = cost.data ? (int)(cost.step/sizeof(costbuf)) : 0;
const int TABSZ = 256;
uchar tab[TABSZ];
sad = (int*)alignPtr(buf + sizeof(sad[0]), ALIGN);
hsad0 = (int*)alignPtr(sad + ndisp + 1 + dy0*ndisp, ALIGN);
htext = (int*)alignPtr((int*)(hsad0 + (height+dy1)*ndisp) + wsz2 + 2, ALIGN);
cbuf0 = (uchar*)alignPtr((uchar*)(htext + height + wsz2 + 2) + dy0*ndisp, ALIGN);
for( x = 0; x < TABSZ; x++ )
tab[x] = (uchar)std::abs(x - ftzero);
// initialize buffers
memset( hsad0 - dy0*ndisp, 0, (height + dy0 + dy1)*ndisp*sizeof(hsad0[0]) );
memset( htext - wsz2 - 1, 0, (height + wsz + 1)*sizeof(htext[0]) );
for( x = -wsz2-1; x < wsz2; x++ )
{
hsad = hsad0 - dy0*ndisp; cbuf = cbuf0 + (x + wsz2 + 1)*cstep - dy0*ndisp;
lptr = lptr0 + std::min(std::max(x, -lofs), width-lofs-1) - dy0*sstep;
rptr = rptr0 + std::min(std::max(x, -rofs), width-rofs-1) - dy0*sstep;
for( y = -dy0; y < height + dy1; y++, hsad += ndisp, cbuf += ndisp, lptr += sstep, rptr += sstep )
{
int lval = lptr[0];
for( d = 0; d < ndisp; d++ )
{
int diff = std::abs(lval - rptr[d]);
cbuf[d] = (uchar)diff;
hsad[d] = (int)(hsad[d] + diff);
}
htext[y] += tab[lval];
}
}
// initialize the left and right borders of the disparity map
for( y = 0; y < height; y++ )
{
for( x = 0; x < lofs; x++ )
dptr[y*dstep + x] = FILTERED;
for( x = lofs + width1; x < width; x++ )
dptr[y*dstep + x] = FILTERED;
}
dptr += lofs;
for( x = 0; x < width1; x++, dptr++ )
{
int* costptr = cost.data ? (int*)cost.data + lofs + x : &costbuf;
int x0 = x - wsz2 - 1, x1 = x + wsz2;
const uchar* cbuf_sub = cbuf0 + ((x0 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp;
cbuf = cbuf0 + ((x1 + wsz2 + 1) % (wsz + 1))*cstep - dy0*ndisp;
hsad = hsad0 - dy0*ndisp;
lptr_sub = lptr0 + MIN(MAX(x0, -lofs), width-1-lofs) - dy0*sstep;
lptr = lptr0 + MIN(MAX(x1, -lofs), width-1-lofs) - dy0*sstep;
rptr = rptr0 + MIN(MAX(x1, -rofs), width-1-rofs) - dy0*sstep;
for( y = -dy0; y < height + dy1; y++, cbuf += ndisp, cbuf_sub += ndisp,
hsad += ndisp, lptr += sstep, lptr_sub += sstep, rptr += sstep )
{
int lval = lptr[0];
for( d = 0; d < ndisp; d++ )
{
int diff = std::abs(lval - rptr[d]);
cbuf[d] = (uchar)diff;
hsad[d] = hsad[d] + diff - cbuf_sub[d];
}
htext[y] += tab[lval] - tab[lptr_sub[0]];
}
// fill borders
for( y = dy1; y <= wsz2; y++ )
htext[height+y] = htext[height+dy1-1];
for( y = -wsz2-1; y < -dy0; y++ )
htext[y] = htext[-dy0];
// initialize sums
for( d = 0; d < ndisp; d++ )
sad[d] = (int)(hsad0[d-ndisp*dy0]*(wsz2 + 2 - dy0));
hsad = hsad0 + (1 - dy0)*ndisp;
for( y = 1 - dy0; y < wsz2; y++, hsad += ndisp )
for( d = 0; d < ndisp; d++ )
sad[d] = (int)(sad[d] + hsad[d]);
int tsum = 0;
for( y = -wsz2-1; y < wsz2; y++ )
tsum += htext[y];
// finally, start the real processing
for( y = 0; y < height; y++ )
{
int minsad = INT_MAX, mind = -1;
hsad = hsad0 + MIN(y + wsz2, height+dy1-1)*ndisp;
hsad_sub = hsad0 + MAX(y - wsz2 - 1, -dy0)*ndisp;
for( d = 0; d < ndisp; d++ )
{
int currsad = sad[d] + hsad[d] - hsad_sub[d];
sad[d] = currsad;
if( currsad < minsad )
{
minsad = currsad;
mind = d;
}
}
tsum += htext[y + wsz2] - htext[y - wsz2 - 1];
if( tsum < textureThreshold )
{
dptr[y*dstep] = FILTERED;
continue;
}
if( uniquenessRatio > 0 )
{
int thresh = minsad + (minsad * uniquenessRatio/100);
for( d = 0; d < ndisp; d++ )
{
if( sad[d] <= thresh && (d < mind-1 || d > mind+1))
break;
}
if( d < ndisp )
{
dptr[y*dstep] = FILTERED;
continue;
}
}
{
sad[-1] = sad[1];
sad[ndisp] = sad[ndisp-2];
int p = sad[mind+1], n = sad[mind-1];
d = p + n - 2*sad[mind] + std::abs(p - n);
dptr[y*dstep] = (short)(((ndisp - mind - 1 + mindisp)*256 + (d != 0 ? (p-n)*256/d : 0) + 15) >> 4);
costptr[y*coststep] = sad[mind];
}
}
}
}
OpenCV executes many algorithms in parallel; parallel_for/do abstract the TBB, PPL and OpenMP backends.
The original image is sub-divided into sub-regions and findStereoCorrespondenceBM()
is executed for each of these sub-regions. That is possible with the interface we see since cv::Mat
can be used as a view to a sub-image without being required to copy actual pixel data. You can verify this by looking at the processors in use (e.g. with process explorer on windows or top on unix) during program execution.
(Originally posted by Hauke Heibel as a comment)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With