I have a weird scenario where type inference isn't working as I'd expect when using a lambda expression. Here's an approximation of my real scenario:
static class Value<T> { } @FunctionalInterface interface Bar<T> { T apply(Value<T> value); // Change here resolves error } static class Foo { public static <T> T foo(Bar<T> callback) { } } void test() { Foo.foo(value -> true).booleanValue(); // Compile error here }
The compile error I get on the second to last line is
The method booleanValue() is undefined for the type Object
if I cast the lambda to Bar<Boolean>
:
Foo.foo((Bar<Boolean>)value -> true).booleanValue();
or if I change the method signature of Bar.apply
to use raw types:
T apply(Value value);
then the problem goes away. The way I'd expect this to work is that:
Foo.foo
call should infer a return type of boolean
value
in the lambda should be inferred to Value<Boolean>
. Why doesn't this inference work as expected and how can I change this API to make it work as expected?
The target type of the lambda expression—the functional interface ActionListener —is inferred from the context, which is a method invocation.
Type Inference means that the data type of any expression (e.g. method return type or parameter type) can be deduced automatically by the compiler. Groovy language is a good example of programming languages supporting Type Inference. Similarly, Java 8 Lambda expressions also support Type inference.
lambda expressions are added in Java 8 and provide below functionalities. Enable to treat functionality as a method argument, or code as data. A function that can be created without belonging to any class. A lambda expression can be passed around as if it was an object and executed on demand.
Java Lambda Expression Example: with or without return keyword. In Java lambda expression, if there is only one statement, you may or may not use return keyword. You must use return keyword when lambda expression contains multiple statements. // Lambda expression without return keyword.
Using some hidden javac
features, we can get more information about what's happening:
$ javac -XDverboseResolution=deferred-inference,success,applicable LambdaInference.java LambdaInference.java:16: Note: resolving method foo in type Foo to candidate 0 Foo.foo(value -> true).booleanValue(); // Compile error here ^ phase: BASIC with actuals: <none> with type-args: no arguments candidates: #0 applicable method found: <T>foo(Bar<T>) (partially instantiated to: (Bar<Object>)Object) where T is a type-variable: T extends Object declared in method <T>foo(Bar<T>) LambdaInference.java:16: Note: Deferred instantiation of method <T>foo(Bar<T>) Foo.foo(value -> true).booleanValue(); // Compile error here ^ instantiated signature: (Bar<Object>)Object target-type: <none> where T is a type-variable: T extends Object declared in method <T>foo(Bar<T>) LambdaInference.java:16: error: cannot find symbol Foo.foo(value -> true).booleanValue(); // Compile error here ^ symbol: method booleanValue() location: class Object 1 error
This is a lot of information, let's break it down.
LambdaInference.java:16: Note: resolving method foo in type Foo to candidate 0 Foo.foo(value -> true).booleanValue(); // Compile error here ^ phase: BASIC with actuals: <none> with type-args: no arguments candidates: #0 applicable method found: <T>foo(Bar<T>) (partially instantiated to: (Bar<Object>)Object) where T is a type-variable: T extends Object declared in method <T>foo(Bar<T>)
phase: method applicability phase
actuals: the actual arguments passed in
type-args: explicit type arguments
candidates: potentially applicable methods
actuals is <none>
because our implicitly typed lambda is not pertinent to applicability.
The compiler resolves your invocation of foo
to the only method named foo
in Foo
. It has been partially instantiated to Foo.<Object> foo
(since there were no actuals or type-args), but that can change at the deferred-inference stage.
LambdaInference.java:16: Note: Deferred instantiation of method <T>foo(Bar<T>) Foo.foo(value -> true).booleanValue(); // Compile error here ^ instantiated signature: (Bar<Object>)Object target-type: <none> where T is a type-variable: T extends Object declared in method <T>foo(Bar<T>)
instantiated signature: the fully instantiated signature of foo
. It is the result of this step (at this point no more type inference will be made on the signature of foo
).
target-type: the context the call is being made in. If the method invocation is a part of an assignment, it will be the left hand side. If the method invocation is itself part of a method invocation, it will be the parameter type.
Since your method invocation is dangling, there is no target-type. Since there is no target-type, no more inference can be done on foo
and T
is inferred to be Object
.
The compiler does not use implicitly typed lambdas during inference. To a certain extent, this makes sense. In general, given param -> BODY
, you will not be able to compile BODY
until you have a type for param
. If you did try to infer the type for param
from BODY
, it might lead to a chicken-and-egg type problem. It's possible that some improvements will be made on this in future releases of Java.
Foo.<Boolean> foo(value -> true)
This solution provides an explicit type argument to foo
(note the with type-args
section below). This changes the partial instantiation of the method signature to (Bar<Boolean>)Boolean
, which is what you want.
LambdaInference.java:16: Note: resolving method foo in type Foo to candidate 0 Foo.<Boolean> foo(value -> true).booleanValue(); // Compile error here ^ phase: BASIC with actuals: <none> with type-args: Boolean candidates: #0 applicable method found: <T>foo(Bar<T>) (partially instantiated to: (Bar<Boolean>)Boolean) where T is a type-variable: T extends Object declared in method <T>foo(Bar<T>) LambdaInference.java:16: Note: resolving method booleanValue in type Boolean to candidate 0 Foo.<Boolean> foo(value -> true).booleanValue(); // Compile error here ^ phase: BASIC with actuals: no arguments with type-args: no arguments candidates: #0 applicable method found: booleanValue()
Foo.foo((Value<Boolean> value) -> true)
This solution explicitly types your lambda, which allows it to be pertinent to applicability (note with actuals
below). This changes the partial instantiation of the method signature to (Bar<Boolean>)Boolean
, which is what you want.
LambdaInference.java:16: Note: resolving method foo in type Foo to candidate 0 Foo.foo((Value<Boolean> value) -> true).booleanValue(); // Compile error here ^ phase: BASIC with actuals: Bar<Boolean> with type-args: no arguments candidates: #0 applicable method found: <T>foo(Bar<T>) (partially instantiated to: (Bar<Boolean>)Boolean) where T is a type-variable: T extends Object declared in method <T>foo(Bar<T>) LambdaInference.java:16: Note: Deferred instantiation of method <T>foo(Bar<T>) Foo.foo((Value<Boolean> value) -> true).booleanValue(); // Compile error here ^ instantiated signature: (Bar<Boolean>)Boolean target-type: <none> where T is a type-variable: T extends Object declared in method <T>foo(Bar<T>) LambdaInference.java:16: Note: resolving method booleanValue in type Boolean to candidate 0 Foo.foo((Value<Boolean> value) -> true).booleanValue(); // Compile error here ^ phase: BASIC with actuals: no arguments with type-args: no arguments candidates: #0 applicable method found: booleanValue()
Foo.foo((Bar<Boolean>) value -> true)
Same as above, but with a slightly different flavor.
LambdaInference.java:16: Note: resolving method foo in type Foo to candidate 0 Foo.foo((Bar<Boolean>) value -> true).booleanValue(); // Compile error here ^ phase: BASIC with actuals: Bar<Boolean> with type-args: no arguments candidates: #0 applicable method found: <T>foo(Bar<T>) (partially instantiated to: (Bar<Boolean>)Boolean) where T is a type-variable: T extends Object declared in method <T>foo(Bar<T>) LambdaInference.java:16: Note: Deferred instantiation of method <T>foo(Bar<T>) Foo.foo((Bar<Boolean>) value -> true).booleanValue(); // Compile error here ^ instantiated signature: (Bar<Boolean>)Boolean target-type: <none> where T is a type-variable: T extends Object declared in method <T>foo(Bar<T>) LambdaInference.java:16: Note: resolving method booleanValue in type Boolean to candidate 0 Foo.foo((Bar<Boolean>) value -> true).booleanValue(); // Compile error here ^ phase: BASIC with actuals: no arguments with type-args: no arguments candidates: #0 applicable method found: booleanValue()
Boolean b = Foo.foo(value -> true)
This solution provides an explicit target for your method call (see target-type
below). This allows the deferred-instantiation to infer that the type parameter should be Boolean
instead of Object
(see instantiated signature
below).
LambdaInference.java:16: Note: resolving method foo in type Foo to candidate 0 Boolean b = Foo.foo(value -> true); ^ phase: BASIC with actuals: <none> with type-args: no arguments candidates: #0 applicable method found: <T>foo(Bar<T>) (partially instantiated to: (Bar<Object>)Object) where T is a type-variable: T extends Object declared in method <T>foo(Bar<T>) LambdaInference.java:16: Note: Deferred instantiation of method <T>foo(Bar<T>) Boolean b = Foo.foo(value -> true); ^ instantiated signature: (Bar<Boolean>)Boolean target-type: Boolean where T is a type-variable: T extends Object declared in method <T>foo(Bar<T>)
This is the behavior that's occurring. I don't know if this is what is specified in the JLS. I could dig around and see if I could find the exact section that specifies this behavior, but type inference notation gives me a headache.
This also doesn't fully explain why changing Bar
to use a raw Value
would fix this issue:
LambdaInference.java:16: Note: resolving method foo in type Foo to candidate 0 Foo.foo(value -> true).booleanValue(); ^ phase: BASIC with actuals: <none> with type-args: no arguments candidates: #0 applicable method found: <T>foo(Bar<T>) (partially instantiated to: (Bar<Object>)Object) where T is a type-variable: T extends Object declared in method <T>foo(Bar<T>) LambdaInference.java:16: Note: Deferred instantiation of method <T>foo(Bar<T>) Foo.foo(value -> true).booleanValue(); ^ instantiated signature: (Bar<Boolean>)Boolean target-type: <none> where T is a type-variable: T extends Object declared in method <T>foo(Bar<T>) LambdaInference.java:16: Note: resolving method booleanValue in type Boolean to candidate 0 Foo.foo(value -> true).booleanValue(); ^ phase: BASIC with actuals: no arguments with type-args: no arguments candidates: #0 applicable method found: booleanValue()
For some reason, changing it to use a raw Value
allows the deferred instantiation to infer that T
is Boolean
. If I had to speculate, I would guess that when the compiler tries to fit the lambda to the Bar<T>
, it can infer that T
is Boolean
by looking at the body of the lambda. This implies that my earlier analysis is incorrect. The compiler can perform type inference on the body of a lambda, but only on type variables that only appear in the return type.
Inference on lambda parameter type cannot depend on the lambda body.
The compiler faces a tough job trying to make sense of implicit lambda expressions
foo( value -> GIBBERISH )
The type of value
must be inferred first before GIBBERISH can be compiled, because in general the interpretation of GIBBERISH depends on the definition of value
.
(In your special case, GIBBERISH happens to be a simple constant independent of value
.)
Javac must infer Value<T>
first for parameter value
; there's no constraints in context, therefore T=Object
. Then, lambda body true
is compiled and recognized as Boolean, compatible with T
.
After you made the change to the functional interface, the lambda parameter type does not require inference; T remains uninfered. Next, the lambda body is compiled, and the return type appears to be Boolean, which is set as a lower bound for T
.
Another example demonstrating the issue
<T> void foo(T v, Function<T,T> f) { ... } foo("", v->42); // Error. why can't javac infer T=Object ?
T is inferred to be String
; the body of lambda did not participate in the inference.
In this example, javac's behavior seems very reasonable to us; it likely prevented a programming error. You don't want inference to be too powerful; if everything we write compiles somehow, we'll lose the confidence on compiler finding errors for us.
There are other examples where lambda body appears to provide unequivocal constraints, yet the compiler cannot use that information. In Java, the lambda parameter types must be fixed first, before the body can be looked at. This is a deliberate decision. In contrast, C# is willing to try different parameter types and see which makes the code compile. Java considers that too risky.
In any case, when implicit lambda fails, which happens rather frequently, provide explicit types for lambda parameters; in your case, (Value<Boolean> value)->true
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With