Normally the dtype
is hidden when it's equivalent to the native type:
>>> import numpy as np
>>> np.arange(5)
array([0, 1, 2, 3, 4])
>>> np.arange(5).dtype
dtype('int32')
>>> np.arange(5) + 3
array([3, 4, 5, 6, 7])
But somehow that doesn't apply to floor division or modulo:
>>> np.arange(5) // 3
array([0, 0, 0, 1, 1], dtype=int32)
>>> np.arange(5) % 3
array([0, 1, 2, 0, 1], dtype=int32)
Why is there a difference?
Python 3.5.4, NumPy 1.13.1, Windows 64bit
A data type object (an instance of numpy. dtype class) describes how the bytes in the fixed-size block of memory corresponding to an array item should be interpreted. It describes the following aspects of the data: Type of the data (integer, float, Python object, etc.)
Creating numpy array by using an array function array(). This function takes argument dtype that allows us to define the expected data type of the array elements: Example 1: Python3.
While a Python list can contain different data types within a single list, all of the elements in a NumPy array should be homogeneous.
In order to change the dtype of the given array object, we will use numpy. astype() function. The function takes an argument which is the target data type. The function supports all the generic types and built-in types of data.
It comes down to a difference in the dtype
, as can be seen from the view
:
In [186]: x = np.arange(10)
In [187]: y = x // 3
In [188]: x
Out[188]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [189]: y
Out[189]: array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3], dtype=int32)
In [190]: x.view(y.dtype)
Out[190]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=int32)
In [191]: y.view(x.dtype)
Out[191]: array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3])
Even though the dtype
descr
are the same, there's some attribute that's different. But which?
In [192]: x.dtype.descr
Out[192]: [('', '<i4')]
In [193]: y.dtype.descr
Out[193]: [('', '<i4')]
In [204]: x.dtype.type
Out[204]: numpy.int32
In [205]: y.dtype.type
Out[205]: numpy.int32
In [207]: dtx.type is dty.type
Out[207]: False
In [243]: np.core.numeric._typelessdata
Out[243]: [numpy.int32, numpy.float64, numpy.complex128]
In [245]: x.dtype.type in np.core.numeric._typelessdata
Out[245]: True
In [246]: y.dtype.type in np.core.numeric._typelessdata
Out[246]: False
So y
s dtype.type
by all appearances is the same as x
s, but it's a different object, with a different id
:
In [261]: id(np.int32)
Out[261]: 3045777728
In [262]: id(x.dtype.type)
Out[262]: 3045777728
In [263]: id(y.dtype.type)
Out[263]: 3045777952
In [282]: id(np.intc)
Out[282]: 3045777952
Add this extra type
to the list, and y
no longer shows the dtype:
In [267]: np.core.numeric._typelessdata.append(y.dtype.type)
In [269]: y
Out[269]: array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3])
So y.dtype.type
is np.intc
(and np.intp
), while x.dtype.type
is np.int32
(and np.int_
).
So to make an array that displays the dtype, use np.intc
.
In [23]: np.arange(10,dtype=np.int_)
Out[23]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [24]: np.arange(10,dtype=np.intc)
Out[24]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=int32)
And to turn this off, append np.intc
to np.core.numeric._typelessdata
.
You actually have multiple distinct 32-bit integer dtypes here. This is probably a bug.
NumPy has (accidentally?) created multiple distinct signed 32-bit integer types, probably corresponding to C int
and long
. Both of them display as numpy.int32
, but they're actually different objects. At C level, I believe the type objects are PyIntArrType_Type
and PyLongArrType_Type
, generated here.
dtype objects have a type
attribute corresponding to the type object of scalars of that dtype. It is this type
attribute that NumPy inspects when deciding whether to print dtype
information in an array's repr
:
_typelessdata = [int_, float_, complex_]
if issubclass(intc, int):
_typelessdata.append(intc)
if issubclass(longlong, int):
_typelessdata.append(longlong)
...
def array_repr(arr, max_line_width=None, precision=None, suppress_small=None):
...
skipdtype = (arr.dtype.type in _typelessdata) and arr.size > 0
if skipdtype:
return "%s(%s)" % (class_name, lst)
else:
...
return "%s(%s,%sdtype=%s)" % (class_name, lst, lf, typename)
On numpy.arange(5)
and numpy.arange(5) + 3
, .dtype.type
is numpy.int_
; on numpy.arange(5) // 3
or numpy.arange(5) % 3
, .dtype.type
is the other 32-bit signed integer type.
As for why +
and //
have different output dtypes, they use different type resolution routines. Here's the one for //
, and here's the one for +
. //
's type resolution looks for a ufunc inner loop that takes types the inputs can be safely cast to, while +
's type resolution applies NumPy type promotion to the arguments and picks the loop matching the resulting type.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With