Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Why is statistics.mean() so slow?

I compared the performance of the mean function of the statistics module with the simple sum(l)/len(l) method and found the mean function to be very slow for some reason. I used timeit with the two code snippets below to compare them, does anyone know what causes the massive difference in execution speed? I'm using Python 3.5.

from timeit import repeat
print(min(repeat('mean(l)',
                 '''from random import randint; from statistics import mean; \
                 l=[randint(0, 10000) for i in range(10000)]''', repeat=20, number=10)))

The code above executes in about 0.043 seconds on my machine.

from timeit import repeat
print(min(repeat('sum(l)/len(l)',
                 '''from random import randint; from statistics import mean; \
                 l=[randint(0, 10000) for i in range(10000)]''', repeat=20, number=10)))

The code above executes in about 0.000565 seconds on my machine.

like image 836
Just some guy Avatar asked May 30 '16 21:05

Just some guy


4 Answers

Python's statistics module is not built for speed, but for precision

In the specs for this module, it appears that

The built-in sum can lose accuracy when dealing with floats of wildly differing magnitude. Consequently, the above naive mean fails this "torture test"

assert mean([1e30, 1, 3, -1e30]) == 1

returning 0 instead of 1, a purely computational error of 100%.

Using math.fsum inside mean will make it more accurate with float data, but it also has the side-effect of converting any arguments to float even when unnecessary. E.g. we should expect the mean of a list of Fractions to be a Fraction, not a float.

Conversely, if we take a look at the implementation of _sum() in this module, the first lines of the method's docstring seem to confirm that:

def _sum(data, start=0):
    """_sum(data [, start]) -> (type, sum, count)

    Return a high-precision sum of the given numeric data as a fraction,
    together with the type to be converted to and the count of items.

    [...] """

So yeah, statistics implementation of sum, instead of being a simple one-liner call to Python's built-in sum() function, takes about 20 lines by itself with a nested for loop in its body.

This happens because statistics._sum chooses to guarantee the maximum precision for all types of number it could encounter (even if they widely differ from one another), instead of simply emphasizing speed.

Hence, it appears normal that the built-in sum proves a hundred times faster. The cost of it being a much lower precision in you happen to call it with exotic numbers.

Other options

If you need to prioritize speed in your algorithms, you should have a look at Numpy instead, the algorithms of which being implemented in C.

NumPy mean is not as precise as statistics by a long shot but it implements (since 2013) a routine based on pairwise summation which is better than a naive sum/len (more info in the link).

However...

import numpy as np
import statistics

np_mean = np.mean([1e30, 1, 3, -1e30])
statistics_mean = statistics.mean([1e30, 1, 3, -1e30])

print('NumPy mean: {}'.format(np_mean))
print('Statistics mean: {}'.format(statistics_mean))

> NumPy mean: 0.0
> Statistics mean: 1.0
like image 155
Jivan Avatar answered Nov 20 '22 01:11

Jivan


if you do care of speed use numpy/scipy/pandas instead:

In [119]: from random import randint; from statistics import mean; import numpy as np;

In [122]: l=[randint(0, 10000) for i in range(10**6)]

In [123]: mean(l)
Out[123]: 5001.992355

In [124]: %timeit mean(l)
1 loop, best of 3: 2.01 s per loop

In [125]: a = np.array(l)

In [126]: np.mean(a)
Out[126]: 5001.9923550000003

In [127]: %timeit np.mean(a)
100 loops, best of 3: 2.87 ms per loop

Conclusion: it will be orders of magnitude faster - in my example it was 700 times faster, but maybe not that precise (as numpy doesn't use Kahan summation algorithm).

like image 25
MaxU - stop WAR against UA Avatar answered Nov 20 '22 02:11

MaxU - stop WAR against UA


I asked the same question a while back but once I noticed the _sum function called in mean on line 317 in the source I understood why:

def _sum(data, start=0):
    """_sum(data [, start]) -> (type, sum, count)
    Return a high-precision sum of the given numeric data as a fraction,
    together with the type to be converted to and the count of items.
    If optional argument ``start`` is given, it is added to the total.
    If ``data`` is empty, ``start`` (defaulting to 0) is returned.
    Examples
    --------
    >>> _sum([3, 2.25, 4.5, -0.5, 1.0], 0.75)
    (<class 'float'>, Fraction(11, 1), 5)
    Some sources of round-off error will be avoided:
    >>> _sum([1e50, 1, -1e50] * 1000)  # Built-in sum returns zero.
    (<class 'float'>, Fraction(1000, 1), 3000)
    Fractions and Decimals are also supported:
    >>> from fractions import Fraction as F
    >>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)])
    (<class 'fractions.Fraction'>, Fraction(63, 20), 4)
    >>> from decimal import Decimal as D
    >>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")]
    >>> _sum(data)
    (<class 'decimal.Decimal'>, Fraction(6963, 10000), 4)
    Mixed types are currently treated as an error, except that int is
    allowed.
    """
    count = 0
    n, d = _exact_ratio(start)
    partials = {d: n}
    partials_get = partials.get
    T = _coerce(int, type(start))
    for typ, values in groupby(data, type):
        T = _coerce(T, typ)  # or raise TypeError
        for n,d in map(_exact_ratio, values):
            count += 1
            partials[d] = partials_get(d, 0) + n
    if None in partials:
        # The sum will be a NAN or INF. We can ignore all the finite
        # partials, and just look at this special one.
        total = partials[None]
        assert not _isfinite(total)
    else:
        # Sum all the partial sums using builtin sum.
        # FIXME is this faster if we sum them in order of the denominator?
        total = sum(Fraction(n, d) for d, n in sorted(partials.items()))
    return (T, total, count)

There is a multitude of operations happening in comparison to just calling the builtin sum, as per the doc strings mean calculates a high-precision sum.

You can see using mean vs sum can give you different output:

In [7]: l = [.1, .12312, 2.112, .12131]

In [8]: sum(l) / len(l)
Out[8]: 0.6141074999999999

In [9]: mean(l)
Out[9]: 0.6141075
like image 5
Padraic Cunningham Avatar answered Nov 20 '22 02:11

Padraic Cunningham


Both len() and sum() are Python builtin functions (with limited functionality), that are written in C and, more importantly, are optimized to work fast with certain types or objects (list).

You can look at the implementation of builtin functions here:

https://hg.python.org/sandbox/python2.7/file/tip/Python/bltinmodule.c

The statistics.mean() is a high level function written in Python. Take a look here at how it is implemented:

https://hg.python.org/sandbox/python2.7/file/tip/Lib/statistics.py

You can see that later uses internally another function called _sum(), which does a few additional checks compared to the builtin functions.

like image 5
grepe Avatar answered Nov 20 '22 03:11

grepe