I am implementing some face alignment algorithm recently. I have read the following papers:
All the paper mentioned a important keyword: shape-indexed-feature
or pose-indexed-feature
. This feature plays a key role in face alignment process. I did not get the key point of this feature. Why is it so important?
If you want get shape-indexed-feature, you should do similarity transform for the face landmarks in one image first. The aim is transform the origin landmarks to a specific location which could be the mean landmark of all images. So the landmarks of each image is at same position.
Then you could extract local features according to the relocate landmarks, which are shape-indexed-feature, cause now the landmarks of each image is a fix shape.
I seached hours get the answer above, a graduation thesis and translated it, but not sure whether it's a right answer or not. In my opinion, it make sense.
A shape-indexed-feature is a feature who's index gives some clue about the hierarchical structure of the shape that it came from. So in face alignment, facial landmarks are extremely important, since they are the things that will be useful in successfully aligning the faces. But, just taking facial landmarks into account throws away some of the structure inherent to a face. You know that the pupil is inside the iris, which is inside the eye. So a shape-indexed-feature would do more than tell you that you are looking at a facial landmark - it would tell you that you are looking at a facial landmark inside another landmark inside another landmark. Because there are only a few features that are 3-nested like that, you can be more confident about aligning those correctly.
Here is a much older paper that explains some of this with simpler language (especially in the introduction): http://www.cs.ubc.ca/~lowe/papers/cvpr97.pdf
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With