In C++, it is faster to process a sorted array than an unsorted array because of branch prediction. In computer architecture, a branch prediction determines whether a conditional branch (jump) in the instruction flow of a program is likely to be taken or not. Branch prediction doesn't play a significant role here.
In short, searching in an unsorted array takes O(n) time: you potentially have to look at every item to find out if what you're looking for is there. A sorted array lets you speed up the search. Instead of having to examine every item, you only have to examine at most log2(n) items.
The worst case scenario for quickSort algorithm is when the array is sorted or almost sorted. That is most likely why it takes you longer time sorting the array which is already sorted.
The major advantage of an ordered array is that the search times have time complexity of O(log n), compared to that of an unordered array, which is O (n).
When you are using the unsorted list all tuples are accessed in memory-order. They have been allocated consecutively in RAM. CPUs love accessing memory sequentially because they can speculatively request the next cache line so it will always be present when needed.
When you are sorting the list you put it into random order because your sort keys are randomly generated. This means that the memory accesses to tuple members are unpredictable. The CPU cannot prefetch memory and almost every access to a tuple is a cache miss.
This is a nice example for a specific advantage of GC memory management: data structures which have been allocated together and are used together perform very nicely. They have great locality of reference.
The penalty from cache misses outweighs the saved branch prediction penalty in this case.
Try switching to a struct
-tuple. This will restore performance because no pointer-dereference needs to occur at runtime to access tuple members.
Chris Sinclair notes in the comments that "for TotalCount around 10,000 or less, the sorted version does perform faster". This is because a small list fits entirely into the CPU cache. The memory accesses might be unpredictable but the target is always in cache. I believe there is still a small penalty because even a load from cache takes some cycles. But that seems not to be a problem because the CPU can juggle multiple outstanding loads, thereby increasing throughput. Whenever the CPU hits a wait for memory it will still speed ahead in the instruction stream to queue as many memory operations as it can. This technique is used to hide latency.
This kind of behavior shows how hard it is to predict performance on modern CPUs. The fact that we are only 2x slower when going from sequential to random memory access tell me how much is going on under the covers to hide memory latency. A memory access can stall the CPU for 50-200 cycles. Given that number one could expect the program to become >10x slower when introducing random memory accesses.
LINQ doesn't know whether you list is sorted or not.
Since Count with predicate parameter is extension method for all IEnumerables, I think it doesn't even know if it's running over the collection with efficient random access. So, it simply checks every element and Usr explained why performance got lower.
To exploit performance benefits of sorted array (such as binary search), you'll have to do a little bit more coding.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With