Consider this simple dataframe:
a b
0 1 2
1 2 3
I perform a .apply
as such:
In [4]: df.apply(lambda x: [x.values])
Out[4]:
a [[140279910807944, 140279910807920]]
b [[140279910807944, 140279910807920]]
dtype: object
In [5]: df.apply(lambda x: [x.values])
Out[5]:
a [[37, 37]]
b [[37, 37]]
dtype: object
In [6]: df.apply(lambda x: [x.values])
Out[6]:
a [[11, 11]]
b [[11, 11]]
dtype: object
Why is pandas printing out junk each time?
I've verified this happens in v0.20.
Edit: Looking for an answer, not a workaround.
It looks like bug, so was opened Issue 17487.
For me working add tolist
:
print (df.apply(lambda x: [x.values.tolist()]))
a [[1, 2]]
b [[2, 3]]
dtype: object
print (df.apply(lambda x: [list(x.values)]))
a [[1, 2]]
b [[2, 3]]
dtype: object
I don't have an answer... just a work around
f = lambda x: x.values.reshape(1, -1).tolist()
df.apply(f)
a [[1, 2]]
b [[2, 3]]
dtype: object
I tracked it down to pd.lib.reduce
pd.lib.reduce(df.values, lambda x: [list(x)])
array([list([[1, 2]]), list([[2, 3]]), list([['a', 'b']])], dtype=object)
Versus
pd.lib.reduce(df.values, lambda x: [x])
array([list([array([None, None], dtype=object)]),
list([array([None, None], dtype=object)]),
list([array([None, None], dtype=object)])], dtype=object)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With