Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Why is my Python NumPy code faster than C++?

Tags:

c++

python

numpy

Why is this Python NumPy code,

import numpy as np
import time

k_max = 40000
N = 10000

data = np.zeros((2,N))
coefs = np.zeros((k_max,2),dtype=float)

t1 = time.time()
for k in xrange(1,k_max+1):
    cos_k = np.cos(k*data[0,:])
    sin_k = np.sin(k*data[0,:])
    coefs[k-1,0] = (data[1,-1]-data[1,0]) + np.sum(data[1,:-1]*(cos_k[:-1] - cos_k[1:]))
    coefs[k-1,1] = np.sum(data[1,:-1]*(sin_k[:-1] - sin_k[1:]))
t2 = time.time()

print('Time:')
print(t2-t1)

faster than the following C++ code?

#include <cstdio>
#include <iostream>
#include <cmath>
#include <time.h>

using namespace std;

// consts
const unsigned int k_max = 40000;
const unsigned int N = 10000;

int main()
{
    time_t start, stop;
    double diff;
    // table with data
    double data1[ N ];
    double data2[ N ];
    // table of results
    double coefs1[ k_max ];
    double coefs2[ k_max ];
    // main loop
    time( & start );
    for( unsigned int j = 1; j<N; j++ )
    {
        for( unsigned int i = 0; i<k_max; i++ )
        {
            coefs1[ i ] += data2[ j-1 ]*(cos((i+1)*data1[ j-1 ]) - cos((i+1)*data1[ j ]));
            coefs2[ i ] += data2[ j-1 ]*(sin((i+1)*data1[ j-1 ]) - sin((i+1)*data1[ j ]));
        }
    }
    // end of main loop
    time( & stop );
    // speed result
    diff = difftime( stop, start );
    cout << "Time: " << diff << " seconds";
    return 0;
}

The first one shows: "Time: 8 seconds" while the second: "Time: 11 seconds"

I know that NumPy is written in C, but I would still think that C++ example would be faster. Am I missing something? Is there a way to improve the C++ code (or the Python one)?

Version 2 of the code

I have changed the C++ code (dynamical tables to static tables) as suggested in one of the comments. The C++ code is faster now, but still much slower than the Python version.

Version 3 of the code

I have changed from debug to release mode and increased 'k' from 4000 to 40000. Now NumPy is just slightly faster (8 seconds to 11 seconds).

like image 726
Mateusz Avatar asked Dec 28 '16 16:12

Mateusz


2 Answers

I am actually surprised that no one mentioned Linear Algebra libraries like BLAS LAPACK MKL and all...

Numpy is using complex Linear Algebra libraries ! Essentially, Numpy is most of the time not built on pure c/cpp/fortran code... it is actually built on complex libraries that take advantage of the most performant algorithms and ideas to optimise the code. These complex libraries are hardly matched by naive implementation of classic linear algebra computations. The simplest first example of improvement is the blocking trick.

I took the following image from the CSE lab of ETH, where they compare matrix vector multiplication for different implementation. The y-axis represents the intensity of computations (in GFLOPs); long story short, it is how fast the computations are done. The x-axis is the dimension of the matrix.

enter image description here

C and C++ are fast languages, but actually if you want to mimic the speed of these libraries, you might have to go one step deeper and use either Fortran or intrinsics instructions (that are perhaps the closest to assembly code you can do in C++).

Consider the question Benchmarking (python vs. c++ using BLAS) and (numpy), where the very good answer from @Jfs, and we observe: "There is no difference between C++ and numpy on my machine."

Some more reference:

Why is a naïve C++ matrix multiplication 100 times slower than BLAS?

like image 70
Marine Galantin Avatar answered Sep 20 '22 22:09

Marine Galantin


I found this question interesting, because every time I encountered similar topic about the speed of NumPy (compared to C/C++) there was always answers like "it's a thin wrapper, its core is written in C, so it's fast", but this doesn't explain why C should be slower than C with additional layer (even a thin one).

The answer is: your C++ code is not slower than your Python code when properly compiled.

I've done some benchmarks, and at first it seemed that NumPy is surprisingly faster. But I forgot about optimizing the compilation with GCC.

I've computed everything again and also compared results with a pure C version of your code. I am using GCC version 4.9.2, and Python 2.7.9 (compiled from the source with the same GCC). To compile your C++ code I used g++ -O3 main.cpp -o main, to compile my C code I used gcc -O3 main.c -lm -o main. In all examples I filled data variables with some numbers (0.1, 0.4), as it changes results. I also changed np.arrays to use doubles (dtype=np.float64), because there are doubles in C++ example. My pure C version of your code (it's similar):

#include <math.h>
#include <stdio.h>
#include <time.h>

const int k_max = 100000;
const int N = 10000;

int main(void)
{
    clock_t t_start, t_end;
    double data1[N], data2[N], coefs1[k_max], coefs2[k_max], seconds;
    int z;
    for( z = 0; z < N; z++ )
    {
        data1[z] = 0.1;
        data2[z] = 0.4;
    }

    int i, j;
    t_start = clock();
    for( i = 0; i < k_max; i++ )
    {
        for( j = 0; j < N-1; j++ )
        {
            coefs1[i] += data2[j] * (cos((i+1) * data1[j]) - cos((i+1) * data1[j+1]));
            coefs2[i] += data2[j] * (sin((i+1) * data1[j]) - sin((i+1) * data1[j+1]));
        }
    }
    t_end = clock();

    seconds = (double)(t_end - t_start) / CLOCKS_PER_SEC;
    printf("Time: %f s\n", seconds);
    return coefs1[0];
}

For k_max = 100000, N = 10000 results where following:

  • Python 70.284362 s
  • C++ 69.133199 s
  • C 61.638186 s

Python and C++ have basically the same time, but note that there is a Python loop of length k_max, which should be much slower compared to C/C++ one. And it is.

For k_max = 1000000, N = 1000 we have:

  • Python 115.42766 s
  • C++ 70.781380 s

For k_max = 1000000, N = 100:

  • Python 52.86826 s
  • C++ 7.050597 s

So the difference increases with fraction k_max/N, but python is not faster even for N much bigger than k_max, e. g. k_max = 100, N = 100000:

  • Python 0.651587 s
  • C++ 0.568518 s

Obviously, the main speed difference between C/C++ and Python is in the for loop. But I wanted to find out the difference between simple operations on arrays in NumPy and in C. Advantages of using NumPy in your code consists of: 1. multiplying the whole array by a number, 2. calculating sin/cos of the whole array, 3. summing all elements of the array, instead of doing those operations on every single item separately. So I prepared two scripts to compare only these operations.

Python script:

import numpy as np
from time import time

N = 10000
x_len = 100000

def main():
    x = np.ones(x_len, dtype=np.float64) * 1.2345

    start = time()
    for i in xrange(N):
        y1 = np.cos(x, dtype=np.float64)
    end = time()
    print('cos: {} s'.format(end-start))

    start = time()
    for i in xrange(N):
        y2 = x * 7.9463
    end = time()
    print('multi: {} s'.format(end-start))

    start = time()
    for i in xrange(N):
        res = np.sum(x, dtype=np.float64)
    end = time()
    print('sum: {} s'.format(end-start))

    return y1, y2, res

if __name__ == '__main__':
    main()

# results
# cos: 22.7199969292 s
# multi: 0.841291189194 s
# sum: 1.15971088409 s

C script:

#include <math.h>
#include <stdio.h>
#include <time.h>

const int N = 10000;
const int x_len = 100000;

int main()
{
    clock_t t_start, t_end;
    double x[x_len], y1[x_len], y2[x_len], res, time;
    int i, j;
    for( i = 0; i < x_len; i++ )
    {
        x[i] = 1.2345;
    }

    t_start = clock();
    for( j = 0; j < N; j++ )
    {
        for( i = 0; i < x_len; i++ )
        {
            y1[i] = cos(x[i]);
        }
    }
    t_end = clock();
    time = (double)(t_end - t_start) / CLOCKS_PER_SEC;
    printf("cos: %f s\n", time);

    t_start = clock();
    for( j = 0; j < N; j++ )
    {
        for( i = 0; i < x_len; i++ )
        {
            y2[i] = x[i] * 7.9463;
        }
    }
    t_end = clock();
    time = (double)(t_end - t_start) / CLOCKS_PER_SEC;
    printf("multi: %f s\n", time);

    t_start = clock();
    for( j = 0; j < N; j++ )
    {
        res = 0.0;
        for( i = 0; i < x_len; i++ )
        {
            res += x[i];
        }
    }
    t_end = clock();
    time = (double)(t_end - t_start) / CLOCKS_PER_SEC;
    printf("sum: %f s\n", time);

    return y1[0], y2[0], res;
}

// results
// cos: 20.910590 s
// multi: 0.633281 s
// sum: 1.153001 s

Python results:

  • cos: 22.7199969292 s
  • multi: 0.841291189194 s
  • sum: 1.15971088409 s

C results:

  • cos: 20.910590 s
  • multi: 0.633281 s
  • sum: 1.153001 s

As you can see NumPy is incredibly fast, but always a bit slower than pure C.

like image 21
Gwidryj Avatar answered Sep 20 '22 22:09

Gwidryj