I am just a beginner of computer science. I learned something about running time but I can't be sure what I understood is right. So please help me.
So integer factorization is currently not a polynomial time problem but primality test is. Assume the number to be checked is n. If we run a program just to decide whether every number from 1 to sqrt(n) can divide n, and if the answer is yes, then store the number. I think this program is polynomial time, isn't it?
One possible way that I am wrong would be a factorization program should find all primes, instead of the first prime discovered. So maybe this is the reason why.
However, in public key cryptography, finding a prime factor of a large number is essential to attack the cryptography. Since usually a large number (public key) is only the product of two primes, finding one prime means finding the other. This should be polynomial time. So why is it difficult or impossible to attack?
So integer factorization is currently not a polynomial time problem but primality test is. Assume the number to be checked is n. If we run a program just to decide whether every number from 1 to sqrt(n) can divide n, and if the answer is yes, then store the number.
RSA is based on the assumption that factoring large integers is computationally intractable. As far as is known, this assumption is valid for classical (non-quantum) computers; no classical algorithm is known that can factor integers in polynomial time.
There is a polynomial time algorithm for factoring polynomials with rational coefficients (the LLL algorithm of Lenstra, Lenstra, and Lovasz), so factoring polynomials over the rationals is known to be "easy" (polynomial time is considered to make the problem "computationally easy", even if in practice it does not ...
The integer factorization problem is defined as follows: given a composite number N, find two integers x and y such that x · y = N. Factoring is an important problem because if it can be done efficiently, then it can be shown that RSA encryption is insecure.
Casual descriptions of complexity like "polynomial factoring algorithm" generally refer to the complexity with respect to the size of the input, not the interpretation of the input. So when people say "no known polynomial factoring algorithm", they mean there is no known algorithm for factoring N-bit natural numbers that runs in time polynomial with respect to N. Not polynomial with respect to the number itself, which can be up to 2^N.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With