I have tried to reimplement heapify method in order to use _siftup
and _siftdown
for updating or deleting any nodes in the heap and maintaining a time complexity of O(log(n)).
I did some effort for optimizing my code, But they proved to be worse compared to that of heapq.heapify
(in terms of the total time taken). So I have decided to look into source code. and compared copied code with the modules ones.
# heap invariant.
def _siftdown(heap, startpos, pos):
newitem = heap[pos]
# Follow the path to the root, moving parents down until finding a place
# newitem fits.
while pos > startpos:
parentpos = (pos - 1) >> 1
parent = heap[parentpos]
if newitem < parent:
heap[pos] = parent
pos = parentpos
continue
break
heap[pos] = newitem
def _siftup(heap, pos):
endpos = len(heap)
startpos = pos
newitem = heap[pos]
# Bubble up the smaller child until hitting a leaf.
childpos = 2*pos + 1 # leftmost child position
while childpos < endpos:
# Set childpos to index of smaller child.
rightpos = childpos + 1
if rightpos < endpos and not heap[childpos] < heap[rightpos]:
childpos = rightpos
# Move the smaller child up.
heap[pos] = heap[childpos]
pos = childpos
childpos = 2*pos + 1
# The leaf at pos is empty now. Put newitem there, and bubble it up
# to its final resting place (by sifting its parents down).
heap[pos] = newitem
_siftdown(heap, startpos, pos)
def heapify(x):
"""Transform list into a heap, in-place, in O(len(x)) time."""
n = len(x)
# Transform bottom-up. The largest index there's any point to looking at
# is the largest with a child index in-range, so must have 2*i + 1 < n,
# or i < (n-1)/2. If n is even = 2*j, this is (2*j-1)/2 = j-1/2 so
# j-1 is the largest, which is n//2 - 1. If n is odd = 2*j+1, this is
# (2*j+1-1)/2 = j so j-1 is the largest, and that's again n//2-1.
for i in reversed(range(n//2)):
_siftup(x, i)
a = list(reversed(range(1000000)))
b = a.copy()
import heapq
import time
cp1 = time.time()
heapq.heapify(a)
cp2 = time.time()
heapify(b)
cp3 = time.time()
print(a == b)
print(cp3 - cp2, cp2 - cp1)
And i found always cp3 - cp2
>= cp2 - cp1
and not same , heapify
took more time than heapq.heaify
even though both were same.
And in some case heapify
took 3 seconds and heapq.heapify
took 0.1 seconds
heapq.heapfy module executes faster than the same heapify they only differ through import.
please let me know the reason, I am sorry if I made some silly mistakes.
The heapify
from the heapq
module is actually a built-in function:
>>> import heapq
>>> heapq
<module 'heapq' from 'python3.9/heapq.py'>
>>> heapq.heapify
<built-in function heapify>
help(heapq.heapify)
says:
Help on built-in function
heapify
in module_heapq
...
So it's actually importing the built-in module _heapq
and thus running C code, not Python.
If you scroll the heapq.py
code further, you'll see this:
# If available, use C implementation
try:
from _heapq import *
except ImportError:
pass
This will overwrite functions like heapify
with their C implementations. For instance, _heapq.heapify
is here.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With